
30th International Conference on
Automated Planning and Scheduling

October 19 – 30, 2020, (((((((((hhhhhhhhhNancy (France) online!

IPC 2020
Proceedings of the

10th International Planning Competition:

Planner and Domain Abstracts –

Hierarchical Task Network (HTN) Planning Track

Preface

Since its first edition in 1998, the International Planning Competition (IPC) has been an integral
event of the planning community. For more than 20 years, it established unified input languages
for planners, enabled an objective comparison between them based on an accessible benchmark
set. The IPC drove the development of planners and fostered research. Thus, the IPC enabled
planning researchers to compare their own work against the work of others – not only within the
competition, but also outside of it. Due to the IPC almost all contemporary planners understand
(some form of) PDDL, which allows for using IPC benchmarks across a multitude of planners.

The first two IPCs had – in addition to the regular track – a track on hand-tailored planners in
which the planners could be provided with additional information or select their algorithms based
on the input domain. Among these planners, some used Hierarchical Planning – most notably
SHOP. Following the second IPC in 2000 the hand-tailored track was discontinued. Hierarchical
planning was thereafter not part of the IPC any more. Research in the field however continued.

The International Planning Competition 2020 features for the first time a track dedicated to
hierarchical planning. In contrast to the previous track on hand-tailored planners we don’t want
to evaluate how good planners can become given any possible additional knowledge, but ask how
well planners can exploit a given hierarchical refinement structure. We therefore faced several
unique challenges. We had to establish a common input language for all planners such that all of
them operate on the very same model. We also had to specify a plan-output format and provide
a verifier, since we had to ensure that the found plans satisfy the decompositional structure of
the given task hierarchy. Further, we had to gather a comprehensive set of benchmark domains,
since no such set existed before. We hope that this first competition for Hierarchical Task
Network planners will foster future research into hierarchical planning and provide a common
basis for many researchers – by establishing a unified input language, a common benchmark set,
and an evaluation of the state of the art in HTN planning. We hope that many future editions
of this competition will follow.

Gregor, Daniel, and Pascal
Organizers of the IPC 2020,
May 2021

ii

Organizing Committee

Gregor Behnke University of Freiburg, Germany
Daniel Höller Saarland University, Saarbrücken, Germany
Pascal Bercher The Australian National University, Canberra, Australia

Timeline of the Competition

Tracks Announced October 18th 2019
Initial Submission of Planners June 9th 2020
Submission of Benchmark Domains June 9th 2020
Final Submission of Planners August 9th 2020

Input Language

The competition used domains and problems formulated in HDDL.1 In addition to the original
HDDL definition, we require support for universal quanfication in preconditions. We have made
some technical clarifications regarding allowed type names and requirements.2 For convenience,
we provide an automated translation of HDDL into (J)SHOP2 syntax.3 Note that there are
domains which can be expressed in HDDL, but for which there is no equivalent SHOP2 model.
The issue lies in the restrictions SHOP2 puts on the allowed ordering. If competitors needed a
different input format (notably SIADEX), we provided assistance and added a translator from
HDDL into the needed input format. These translators are always included in the planner
directly, i.e. any competitor was given the same HDDL file as input.

Output Format

We have defined an output format in which the planners have to provide their plans, which
includes the decompositions that were applied in order to obtain them.4 We have furthermore
developed a verifier that checks the correctness of the returned plan against the domain and
problem file it was derived for.5 Mauricio Cecilio Magnaguagno kindly created a tool for visu-
alising the output format.6

1HDDL – A Language to Describe Hierarchical Planning Problems. Daniel Höller, Gregor Behnke, Pascal
Bercher, Susanne Biundo, Humbert Fiorino, Damien Pellier, and Ron Alford. Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI 2020). AAAI Press. 9883–9891. 2020.

2https://gki.informatik.uni-freiburg.de/competition/hddl.pdf
3https://github.com/panda-planner-dev/pandaPIparser
4https://gki.informatik.uni-freiburg.de/ipc2020/format.pdf
5https://github.com/panda-planner-dev/pandaPIparser
6https://maumagnaguagno.github.io/HTN_Plan_Viewer/

iii

https://gki.informatik.uni-freiburg.de/competition/hddl.pdf
https://github.com/panda-planner-dev/pandaPIparser
https://gki.informatik.uni-freiburg.de/ipc2020/format.pdf
https://github.com/panda-planner-dev/pandaPIparser
https://maumagnaguagno.github.io/HTN_Plan_Viewer/

Tracks

Based on the results of a community questionnaire, we originally announced that the 2020 IPC
will feature three different sub-tracks. The technical meaning of the tracks will be explained
below.

• partial-order, recursive

• total-order, recursive

• total-order, non-recursive

After domain and planner submission we have however decided to cancel the third track. All
planners that wanted to participate in the third track also wanted to participate in the second
track. Further only three non-recursive domains were submitted: Barman-BDI, Childsnack, and
Woodworking.

All tracks share common restrictions on the input. All preconditions and effects contain only
literals, negated literals, conjunctions, and universal quantifiers (forall), all actions have unit-
cost, and methods may contain preconditions (conjunctions of literals). For the specification of
the tracks and technical requirements we defined the meaning of the following words.

• total-order: A domain is totally ordered iff the subtasks in all methods and in the initial
task network form a sequence, i.e. the declared ordering arranges the tasks in a sequence.

• partial-order: A domain is partially ordered iff it is not totally ordered, i.e. there is at
least one method whose subtasks are not totally-ordered or the initial task network is not
a sequence.

• non-recursive: A domain is non-recursive if there is a total order on its lifted tasks (prim-
itive and abstract) such that for every method that decomposes an abstract task A, the
tasks in the methods’ task network occur after A in the total order. In other words, it is
not possible to derive a task network containing a task A by decomposing the task A.

• recursive: A domain that is not non-recursive.

• Method precondition: A list of literals that may be associated with a method. A method
may only be applied if its method precondition holds, as explained next. For totally-
ordered HTN planning problems, the precondition has to hold in the state in which the
first action (that originates via further decompositions from the method’s subtasks) is
executed. For partially-ordered HTN planning problems, the precondition has to hold
in some state before the first action (that originates via further decompositions from the
methods’ subtasks) is executed, but after the state resulting from the last necessarily
preceding tasks for the tasks contained in the method.7

All data of the IPC 2020 can be found at http://ipc2020.hierarchical-task.net.

7See the paper describing HDDL for a more detailed discussion.

iv

http://ipc2020.hierarchical-task.net

Rules

To evaluate planners, we used the agile metric used in the last IPC, i.e. a planner is regarded
better wrt. that metric if it finds any solution to the problem faster. The score of a planner
on a solved task is 1 if the task was solved within 1 second and 0 if the task was not solved
within the resource limits. If the task was solved in t seconds (1 ≤ t ≤ 1800) then its score is

min{1, 1− log(t)
log(1800)}. The score of a planner is the sum of its scores for all tasks.

For each problem, each planner is given 1 CPU core, 8 GB of memory, and 30 minutes of
runtime. All produced plans were verified. If an invalid plan is returned, all tasks in the domain
are counted as unsolved. If that happens in more than one domain, the planner is disqualified.

Domains

In the IPC 2020, we have used the following domains. If this booklet contains a paper describing
the domain, we reference to it.

Partial Order Track

• Barman-BDI (page 39)
• Monroe-Fully-Observable8

• Monroe-Partially-Observable8

• PCP (page 24– 25)
• Rover
• Satellite (page 40– 42)
• Transport
• UM-Translog
• Woodworking (page 43– 44)

Total Order Track

• AssemblyHierarchical (page 19– 20)
• Barman-BDI (page 39)
• Blocksworld-GTOHP (page 21– 23)
• Blocksworld-HPDDL (page 31)
• Childsnack (page 21– 23)
• Depots (page 21– 23)
• Elevator-Learned-ECAI-16 (page 26– 30)
• Entertainment
• Factories-simple (page 45– 46)
• Freecell-Learned-ECAI-16 (page 26– 30)
• Hiking (page 21– 23)

8Partially Described in: Plan and Goal Recognition as HTN Planning. Daniel Höller, Gregor Behnke, Pascal
Bercher, and Susanne Biundo. Proceedings of the 30th International Conference on Tools with Artificial
Intelligence (ICTAI 2018). IEEE Computer Society. 466–473. 2018.

v

• Logistics-Learned-ECAI-16 (page 26– 30)
• Minecraft-Player9

• Minecraft-Regular9

• Monroe-Fully-Observable8

• Monroe-Partially-Observable8

• Multiarm-Blocksworld (page 31)
• Robot (page 32)
• Rover-GTOHP (page 21– 23)
• Satellite-GTOHP (page 21– 23)
• Snake (page 37– 38)
• Towers (page 33)
• Transport
• Woodworking (page 43– 44)

Awards

Partial Order Track

• Winner: SIADEX (page 1– 4)
by Juan Fernández Olivares and Ignacio Vellido Expósito

• Runner-Rup: pyHiPOP (page 13– 16)
by Charles Lesire and Alexandre Albore

• Further participant: PDDL4J – PO configuration (page 17– 18)
by Damien Pellier and Humbert Fiorino

Total Order Track

• Winner: HyperTensioN (page 5– 8)
by Mauricio Cecilio Magnaguagno, Felipe Meneguzzi, and Lavindra de Silva

• Runner-Rup: LiloTane (page 9– 12)
by Dominik Schreiber

• Further participant: PDDL4J – TO and PO configurations (page 17– 18)
by Damien Pellier and Humbert Fiorino

• Further participant: pyHiPOP (page 13– 16)
by Charles Lesire and Alexandre Albore

• Further participant: SIADEX (page 1– 4)
by Juan Fernández Olivares and Ignacio Vellido Expósito

9Described in: Construction-Planning Models in Minecraft. Julia Wichlacz, Alvaro Torralba, and Jörg Hoffmann.
Proceedings of the Second ICAPS Workshop on Hierarchical Planning. 1–5. 2019.

vi

Table of Contents

Descriptions of Planners

Addressing HTN Planning with Blind Depth First Search

Juan Fernandez-Olivares, Ignacio Vellido, and Luis Castillo . 1 – 4

HyperTensioN: A three-stage compiler for planning

Mauŕıcio Cećılio Magnaguagno, Felipe Meneguzzi, and Lavindra de Silva5 – 8

Lifted Logic for Task Networks: TOHTN Planner Lilotane in the IPC 2020

Dominik Schreiber . 9 – 12

pyHiPOP – Hierarchical Partial-Order Planner

Charles Lesire and Alexandre Albore . 13 – 16

Totally and Partially Ordered Hierarchical Planners in PDDL4J Library

Damien Pellier and Humbert Fiorino . 17 – 18

Descriptions of Domains

AssemblyHierarchical – Connecting Devices through Cables

Gregor Behnke . 19 – 20

From Classical to Hierarchical: Benchmarks for the HTN Track of the International
Planning Competition

Damien Pellier and Humbert Fiorino . 21 – 23

From PCP to HTN Planning Through CFGs

Daniel Höller, Songtuan Lin, Kutluhan Erol, and Pascal Bercher 24 – 25

Hierarchical Task Networks Generated Using Invariant Graphs for IPC2020

Damir Lotinac, Filippos Kominis, and Anders Jonsson .26 – 30

vii

HTN IPC-2020 Domains: Blocksworld-HPDDL and Multiarm-Blocksworld

Ron Alford .31

HTN IPC-2020 Domain: Robot

Ron Alford .32

HTN IPC-2020 Domain: Towers

Ron Alford .33

HTN Planning Domain for Deployment of Cloud Applications

Ilche Georgievski . 34 – 36

Snake Domain for HTN IPC 2020

Mauŕıcio Cećılio Magnaguagno . 37 – 38

The Barman-HTN Domain for IPC 2020

Max Waters, Lin Padgham, and Sebastian Sardina . 39

The Hierarchical Satellite Domain

Bernd Schattenberg . 40 – 42

The Hierarchical Woodworking Domain

Bernd Schattenberg and Pascal Bercher . 43 – 44

The HTN Domain “Factories”

Malte Sönnichsen and Dominik Schreiber . 45 – 46

The Smartphone Domain

Pascal Bercher, Susanne Biundo, and Bernd Schattenberg . 47

viii

ix

Addressing HTN Planning with Blind Depth First Search*

Juan Fernandez-Olivares, Ignacio Vellido, Luis Castillo
Department of Computer Science and Artificial Intelligence

University of Granada
faro@decsai.ugr.es, ignaciove@correo.ugr.es, l.castillo@decsai.ugr.es

Abstract

This paper briefly describes SIADEX, the HTN planner win-
ner of the Partial Order track in the 2020 International Plan-
ning Competition. We also show a discussion of the results
regarding run time and memory usage for the different prob-
lems configured in the competition.

Introduction
In this work we describe SIADEX, an HTN planner (Castillo
et al. 2006) based on the same foundations than SHOP2
(Nau et al. 2003). It follows a progression search with a
blind depth first search process and allows for partially or-
dered and recursive tasks networks. The planner was de-
signed as a simple search process yet successfully ap-
plied to many real applications (Fdez-Olivares et al. 2006;
González-Ferrer et al. 2013; Fdez-Olivares et al. 2019;
Fernandez-Olivares and Perez 2020). Its power lies in that
it is guided by the knowledge represented in the HTN plan-
ning domain, which is written in the hierarchical planning
language HPDL (Castillo et al. 2006; González-Ferrer et al.
2013). This language is a hierarchical extension of PDDL
2.2 level 3 (Edelkamp and Hoffmann 2004), so the plan-
ner can reason about numeric and temporal information. The
2020 International Planning Competition (IPC2020) is con-
cerned with only STRIPS-like domains, thus these features
are obviated in this brief description. We refer to Castillo et
al. (2006) and González-Ferrer et al. (2013) for a detailed
description of the temporal and numeric capabilities of both
the planner and the language.

SIADEX is the winner of the Partial Order track in the
IPC held at ICAPS2020. A summary of the results obtained
by the planner in this competition is shown in Table 1.
SIADEX solved 95 out of 224 (42% overall coverage) prob-
lem instances configured in the competition. It shows 100%
coverage (solved all the instances) and scores above 0.92
in 3 domains (Barman, Satellite, UMTranslog). For Bar-
man and Satellite it scored 1, what means that it took less
than 1 second to solve all the instances. In Rover domain

*This work has been partially supported by Spanish Govern-
ment Project MINECO RTI2018-098460-B-I00

the coverage and score are reasonable (70% and 0.70 re-
spectively). But in domains for which it scores under 0.7,
SIADEX shows poor coverage. This may be due to the fact
that the task networks in Barman, Rover, Satellite and UM-
Translog contain advice to solve the problems, and in other
domains the planning knowledge embodies recursive tasks
that cannot be adequately handled by the blind DFS search
process implemented. For example, in Transport domain or
Monroe (either full or partially observable alternatives) re-
cursive tasks are defined as left recursive, while in UM-
Translog are right recursive, with additional methods to ap-
propriately guide to a hierarchical, recursive path planning
process. In PCP domain SIADEX could not solve any in-
stance. A detailed explanation of the results is shown below
in the following sections. It is important to remark that in the
verification tests SIADEX did not provide invalid plans for
any instance.

Id Domain Instances Solved % Cov. Score
4 PCP 17 0 0 0.00
7 Transport 40 1 2.5 0.03
3 Mon-PO 25 2 8 0.05
9 WoodW 30 3 10 0.10
2 Mon-FO 25 8 32 0.24
5 Rover 20 14 70 0.70
1 Barman 20 20 100 0.92
8 UM-Tra 22 22 100 1.00
6 Satellite 25 25 100 1.00

Table 1: Summary of the results of SIADEX in IPC2020. The
columns describe the domain id for the Partial Order track, its
name, number of instances configured, number of instances solved,
coverage expressed as a percentage, and the score calculated as
min{1, log(t)/log(T)} for t the time to solve all the instances in
each domain and T = 1800 seconds.

In the following sections we provide a brief, yet detailed
description of the main features of SIADEX. Then we dis-
cuss the results of SIADEX analyzing its behavior in each
domain, ending the paper with some concluding remarks.

The 10th International Planning Competition – Planner and Domains Abstracts

1

SIADEX in a nutshell
As explained above, SIADEX is based on a non-informed
search process, i.e., the planner does not use numeric heuris-
tic information (the states are not evaluated in any way),
thus the only heuristic used to guide the search is that rep-
resented in the HTN domain. That is to say, both the search
process and the language are strongly headed to provide ad-
vice to the planning process. Search nodes are stored in a
stack (fringe set) that is efficiently implemented and repre-
sents not only the basic information in standard HTN pro-
gression search (world state, current task network, solution
plan prefix) but an agenda that stores the pending planning
decisions. Since the planner follows a lifted planning ap-
proach, the main planning decisions (choice points in the
search process) are related to tasks unification (either prim-
itive or compound), precondition unification (either actions
or methods), and alternative methods to be applied to a com-
pound task (alternative methods for any task are stacked in a
linear structure, therefore tasks’s methods resemble if-then-
else control structures).

HPDL incorporates almost all the features of HDDL
(Höller et al. 2020), the language used as standard in this
competition, and there is a specific translator from HDDL
to HPDL based on the parser provided for the competition.
HPDL primitive actions can be defined either as non tempo-
ral PDDL actions or PDDL durative actions, inheriting all
the features that PDDL provides for preconditions and ef-
fects. Compound tasks are defined with a header (name and
list of typed parameters) and have associated a set of meth-
ods to map compound tasks to predefined task networks. Ev-
ery method inherits the parameters of the compound task it
is associated with, but the language allows for the use of
additional variables in a method if necessary. This feature
allows for easily translating HDDL methods descriptions,
which have their own list of typed parameters, into HPDL
methods without affecting their semantics.

Furthermore, HPDL allows to restrict the type of a param-
eter inside a method, it is even possible to use variables in a
method which are not defined in the paramaters of its associ-
ated task. That is, a method in HPDL can have a different set
of variables than the parameters of the task its is attached to,
just as happens in the methods of HDDL or SHOP. Anyway,
we think that the syntax of HDDL is better than HPDL for
this feature, in the sense that it directly provides a way to de-
fine the “local” parameters of a method. On the other hand,
maybe HPDL provides more flexibility to manage variables,
since one can use as many variables as needed in the “body”
of a method without the need to define them in a “header”
(HDDL forces to do it).

Method preconditions are described in the same way than
PDDL actions preconditions (allowing for universal quan-
tification), but the language extends preconditions expres-
sions with additional features, like a special predicate to bind
variables to symbolic or numerical expressions, and a sort-
by structure, borrowed from SHOP2 (Nau et al. 2003), to
provide an order between variable unifications according to
a given criterion.

Task networks are represented as a partially ordered set
of compound/primitive tasks, allowing for recursive defini-

tions. The language also allows for the definition of inline
tasks, i.e., tasks without name nor parameters which can
be defined on-the-fly, which are interpreted as primitive ac-
tions and mostly used carry out ad hoc inference, by as-
serting or retracting facts in the world state. In real appli-
cations, this is a very welcome feature for knowledge en-
gineers. Regarding the syntax to specify partially-ordered
task networks, we borrowed from SHOP the two task or-
dering operators: the (:ordered t1 .. tn) of SHOP
in HPDL is (t1 .. tn) and (:unordered t1..tn)
is [t1 .. tn], where ti does not refer to the label of
a task, but to the header of the task itself. It is possible
to combine them, for example, (t1 [t2 t3] t4). We
think that using labels for tasks (like in HDDL or in the for-
mer proposal of Erol, Hendler, and Nau (1994)) is more ex-
pressive since some ordering patterns cannot be expressed
with () and []. For example, the following ordering con-
straint expressed in HDDL :ordering ((< t1 t4)
(< t2 t4) (< t2 t5) (< t3 t5)) cannot be ex-
pressed with this syntax unless using ad-hoc predicates to
force the ordering between [t1, t2] and t4, and [t2,
t3] and t5. Nevertheless, HPDL embodies the capabil-
ity to represent temporal constraints over start/end points of
tasks (either primitive or compound) allowing to describe
more expressive ordering patterns (in fact, all the relations of
Allen’s algebra can be represented (Castillo et al. 2006)). We
think that it would be possible to define a compilation pro-
cess that translates HDDL ordering constraints into HPDL
decomposition methods including temporal constraints, but
this feature is not used in the current competition.

Results discussion
Regarding runtime and memory usage, Tables 2 and 3 show
that in general SIADEX uses around 0.3 seconds and 3.6
KB to solve almost every single instance, without practi-
cally no dispersion, except for the hardest problems in do-
mains BarmanBDI and Monroe. Further, we have observed
in the datasets of the competition that PyHiPOP (the other
nondisqualified contestant) shows more runtime and mem-
ory usage than SIADEX (overall, at least an order of magni-
tude higher). This may partially be due to the fact that data
structures in SIADEX are better handled. For example, the
representation of nodes in the fringe set in SIADEX is opti-
mized in such a way that, for each node, only the necessary
information to revert the changes in case of backtracking is
stored. This would allow SIADEX to be more efficient in
both planning time and memory usage

In the following we briefly describe the results for each
domain, aimed to analyse how complex are the problems
proposed to SIADEX, as well as the diversity in the com-
plexity of the instances.

PCP domain. SIADEX was unable to solve any instance
in this domain. It is the only domain based on a propositional
representation, and we think that this poor behaviour may be
due to some failure in de parser from HDDL to HPDL, an
issue that needs further study.

Wood Working domain. In this domain 3 out of 30 in-
stances (10% coverage) were solved with a peak memory
average around 3.6KB without almost variation among the

The 10th International Planning Competition – Planner and Domains Abstracts

2

Id Barman Monr-FO Monr-PO PCP Rover Satellite Transport UM-Tr WoodW
[1,20] [21,45] [46,70] [71,87] [88,107] [108,132] [133,172] [173,194] [195,224]

1 0.3 20 U U U U U U 0.2 16 0.2 5 0.2 8.0 0.3 26 U U
2 0.3 44 U U U U U U 0.3 27 0.2 5 U U 0.3 13 0.3 3
3 0.3 68 U U U U U U 0.3 28 0.2 7 U U 0.3 14 U U
4 0.3 42 U U U U U U 0.3 19 0.2 11 U U 0.3 11 0.3 7
5 0.3 65 U U U U U U 0.3 39 0.2 10 U U 0.3 12 U U
6 0.4 90 28.00 27 U U U U U U 0.2 10 U U 0.3 9 0.3 6
7 0.3 46 U U U U U U 0.3 55 0.2 9 U U 0.3 7 U U
8 0.3 68 U U U U U U 0.3 67 0.2 13 U U 0.3 9 U U
9 0.3 94 U U U U U U 0.3 65 0.3 17 U U 0.3 11 U U

10 0.3 70 17.78 40 U U U U 0.3 75 0.3 12 U U 0.3 11 U U
11 0.5 142 U U U U U U 0.3 75 0.2 16 U U 0.5 37 U U
12 0.4 114 U U U U U U 0.3 38 0.2 16 U U 0.3 17 U U
13 0.8 214 0.56 28 0.33 35 U U 0.3 98 0.2 15 U U 0.3 27 U U
14 0.4 114 0.82 35 U U U U U U 0.2 16 U U 0.3 9 U U
15 0.9 238 U U 129 35 U U U U 0.3 17 U U 0.3 10 U U
16 1.8 334 2.80 22 U U U U 0.3 97 0.3 19 U U 0.3 11 U U
17 4.2 478 27.78 27 U U U U U U 0.3 22 U U 0.3 9 U U
18 11.0 718 28.09 25 U U - - 0.5 115 0.3 22 U U 0.3 9 U U
19 23.2 958 U U U U - - U U 0.3 28 U U 0.3 30 U U
20 41.7 1198 1.69 24 U U - - U U 0.3 27 U U 0.3 17 U U
21 - - U U U U - - - - 0.2 18 U U 0.3 26 U U
22 - - U U U U - - - - 0.3 25 U U 0.3 18 U U
23 - - U U U U - - - - 0.2 5 U U - - U U
24 - - U U U U - - - - 0.2 5 U U - - U U
25 - - U U U U - - - - 0.2 7 U U - - U U

Table 2: Run time average (in seconds) and plan length for the instances solved by Siadex in the domains of the competition. “U” stands for
unsolved and “-” for no configured. The instance index interval for each domain is shown under its name. The table only shows 25 rows for
each domain, since this is the maximum number of instances that SIADEX reached to solve for all the domains.

instances. This is the only domain where PyHiPOP super-
seded SIADEX. Without a deeper understanding of the plan-
ning domain we are unable to provide an explanation of this
fact, nevertheless, we think that PyHiPOP solved more in-
stances (concretely instances 197 and 199) because of the
use of unbound variables in the definition of the HTN prob-
lem.

Transport domain. 1 out of 40 instances (instance id
133) were solved, with a memory average of 0.00346KB and
a runtime of 0.2 seconds, showing a similar memory usage
than in other domains. On the other hand, PyHiPOP solved
2 out of 40 for the same domain with an average memory of
1.5 MBytes and an average runtime of 18.6 seconds, both al-
most without dispersion. The behaviour of SIADEX in this
domain may be explained by the way in which the tasks
used to recursively solve path planning problems are rep-
resented. The order in which methods have to be applied
matters, and in the Transport domain the task get-to is rep-
resented as a left recursive task in which the first method to
be used contains the recursive decomposition. If SIADEX
firstly addresses the task decomposition with that recursive
method, it easily falls into an infinitely recursive loop. This
could have been fixed with an improvement of the parsing
process, by identifying the appropriate order in which meth-
ods should be applied.

Monroe domain. In domain Monroe-Partially-

Observable 2 out of 25 instances (instances 59 and
61) were solved, with a memory peak average of 3604.8
KB and 7773394.4 KB, and a runtime of 0.3 and 128.9
seconds, respectively. In Monroe-Fully-Observable 8 out of
25 (32% coverage) instances were solved with an important
dispersion among the runtime and memory usage. In fact
there is a coefficient of variation1 of 0.85 in runtime values
and 0.87 in memory usage, while in other domains (except
BarmanBDI which amounts to 1) this coefficient is less than
0.17. In both domains run time and memory usage is clearly
superior to that of other domains. The values found in that
domain are an indication that the problems configured in the
Monroe domain (in both versions) are diverse in complexity
and harder to solve by SIADEX.

Rover domain. SIADEX solved 14 out of 20 problem
instances (70% of coverage) with a score of 0.72. It was un-
able to solve the instances 93, 101, 102, 104, 106 and 107
of this domain. In this domain there is a 17% of variation
with respect to the mean value in runtime and a 6% of vari-
ation for peak memory. This means that SIADEX solved all
the problems in almost the same run time showing a simi-
lar use of memory in all of them. We can conclude that the
70% instances in this domain are of similar computational
complexity and that the problems are not diverse.

1The coefficient of variation measures the significance of the
standard deviation with respect to the average.

The 10th International Planning Competition – Planner and Domains Abstracts

3

Id Bar M-FO Rov Sat UM Wwo
1 3.5 U 3.6 3.5 3.5 U
2 3.4 U 3.5 3.5 3.6 3.5
3 3.5 U 3.5 3.5 3.6 U
4 3.5 U 3.6 3.6 3.6 3.5
5 3.4 U 3.5 3.5 3.5 U
6 3.4 2286.6 0 3.5 3.4 3.7
7 3.5 U 3.6 3.5 3.4 U
8 3.4 U 3.5 3.7 3.5 U
9 3.5 U 3.4 3.5 3.5 U

10 3.5 1581.3 3.5 3.6 3.5 U
11 3.4 U 3.4 3.4 13 U
12 3.4 U 3.6 3.5 3.5 U
13 3.5 20.1 3.6 3.7 3.4 U
14 3.6 43.8 0 3.5 3.5 U
15 3.6 U 0 3.4 3.7 U
16 3.6 246.9 3.7 3.5 3.6 U
17 3.9 2281.6 0 3.6 3.5 U
18 11.1 2558.3 3.5 3.5 3.5 U
19 22.6 U 0 3.5 3.5 U
20 31.2 136.1 0 3.5 3.6 U
21 - U - 3.5 3.4 U
22 - U - 3.5 3.6 U
23 - U - 3.5 - U
24 - U - 3.5 - U
25 - U - 3.4 - U

Table 3: Memory usage of SIADEX (in KBytes). PCP,
Transport and Monroe-PO are not shown, but described in
the text. “U” stands for unsolved and “-” for no configured.

Barman-BDI domain. In this domain all the instances
were solved with a score of 0.92. This domain shows the
greater dispersion among the run time and memory usage
values, therefore the problems configured are diverse (from
the SIADEX perspective) and it seems that the problem con-
figuration could be considered as a good testbed to evaluate
the performance of the planner.

Satellite and UM-Translog domains. In both domains
SIADEX achieved a 100% coverage and all the problems
were solved in less than one second. Similar values in av-
erage run time and memory usage are shown, with very lit-
tle variation, though some variation in the length of plans.
These are the easier problems to SIADEX, and we think that
for these domains there is more than only domain dynamics
encoded in the decomposition methods.

Conclusions
In summary we are presenting an HTN planning algorithm
based on DFS that handles almost all the features of HDDL.
The planner shows a reasonable behaviour with respect to
the domains an problems provided for the competition. All
the domains and problems have been successfully translated
from HDDL to HPDL, and the planner provides valid so-
lutions in all the problems for which it finds one. However
the planner does not provide solutions to several problems
in concrete domains. We think that this is due to recur-
sion problems which are difficult to overcome with a blind

DFS process, and which in real applications are avoided
by knowledge engineering, injecting specific knowledge to
the planner, after a thorough analysis of the domain. In the
domains without domain-specific advice for how to solve
a problem, this planner is bound to lack behind those that
apply heuristic guidance. Since SHOP also relies on expert
knowledge, having a comparison with it would be very in-
teresting. Anyway, our aim in this competition is to be aware
of the situation of our planner with respect current develop-
ments, and to deeply analyse the limitations of our planning
techniques in order to establish research directions for the
improvement of both, the planning process and the planning
language.

Acknowledgments
We are very grateful to the organizers of the competition,
and specially to Gregor Behnke for his invaluable help and
effort to develop the HDDL to HPDL parser. Many of their
tests led us to discover both some limitations of our lan-
guage, and ways to improve them in future versions of our
planner.

References
Castillo, L.; Fernández-Olivares, J.; Garcı́a-Pérez, Ó.; and
Palao, F. 2006. Efficiently handling temporal knowledge in
an htn planner. In ICAPS, 63–72.
Edelkamp, S., and Hoffmann, J. 2004. Pddl 2.2: The lan-
guage for the classical part of the 4th international plan-
ning competition, albert ludwigs universität institüt fur in-
formatik. Technical report, Germany, Technical Report.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. Htn planning:
Complexity and expressivity. In AAAI, volume 94, 1123–
1128.
Fdez-Olivares, J.; Castillo, L.; Garcıa-Pérez, O.; and Palao,
F. 2006. Bringing users and planning technology together.
experiences in siadex. In Proc. ICAPS, 11–20.
Fdez-Olivares, J.; Onaindia, E.; Castillo, L.; Jordán, J.; and
Cózar, J. 2019. Personalized conciliation of clinical guide-
lines for comorbid patients through multi-agent planning.
Artificial intelligence in medicine 96:167–186.
Fernandez-Olivares, J., and Perez, R. 2020. Driver activity
recognition by means of temporal htn planning. In Proceed-
ings of the International Conference on Automated Planning
and Scheduling, volume 30, 375–383.
González-Ferrer, A.; Ten Teije, A.; Fdez-Olivares, J.; and
Milian, K. 2013. Automated generation of patient-
tailored electronic care pathways by translating computer-
interpretable guidelines into hierarchical task networks. Ar-
tificial intelligence in medicine 57(2):91–109.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. Hddl: An extension to pddl
for expressing hierarchical planning problems. In AAAI,
9883–9891.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. Shop2: An htn planning
system. Journal of artificial intelligence research 20:379–
404.

The 10th International Planning Competition – Planner and Domains Abstracts

4

HyperTensioN
A three-stage compiler for planning

Maurı́cio Cecı́lio Magnaguagno1, Felipe Meneguzzi2 and Lavindra de Silva3

1Independent researcher
2School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil

3Department of Engineering, University of Cambridge, Cambridge, UK
maumagnaguagno@gmail.com
felipe.meneguzzi@pucrs.br

lavindra.desilva@eng.cam.ac.uk

Abstract

Hierarchical Task Networks (HTN) planners generate
plans using a decomposition process with extra domain
knowledge to guide search towards a planning task.
While many HTN domain descriptions are made by ex-
perts, they may repeatedly describe the same precondi-
tions, or methods that are rarely used or possible to be
decomposed. By leveraging a three-stage compiler de-
sign we can easily support more language descriptions
and preprocessing optimizations that when chained can
greatly improve runtime efficiency in such domains. In
this paper we present the HyperTensioN HTN planner,
as it was submitted to the HTN IPC 2020.

Introduction
Hierarchical planning was originally developed as a means
to allow planning algorithms to incorporate domain knowl-
edge into the search engine using an intuitive formal-
ism (Ghallab, Nau, and Traverso 2004). Hierarchical Task
Network (HTN) is the most widely used formalism for hi-
erarchical planning, having been implemented in a variety
of systems rendered in different (though conceptually simi-
lar) input languages (de Silva, Lallement, and Alami 2015;
Nau et al. 2003; Ilghami and Nau 2003). Recent research
has re-energized work on HTN planning formalisms and
search procedures, leading to a new generation of HTN plan-
ners (Bercher et al. 2017; Höller et al. 2018; Höller et al.
2020a; Höller et al. 2020b). In this paper, we outline key de-
sign elements, features, and optimizations of the HyperTen-
sioN planner, as submitted to the 2020 International Plan-
ning Competition (IPC)1. Specifically, we focus on the com-
pilation of HTN instances into Ruby programs, as well as
the optimizations based on transformation of HTN domains
and problems to minimize backtracking.

Three-stage design architecture
HyperTensioN was originally developed to automatically
convert classical planning instances to hierarchical plan-
ning instances (Magnaguagno and Meneguzzi 2017). This
required at least a PDDL (McDermott et al. 1998) parser
(front-end) and a (J)SHOP (Ilghami and Nau 2003) descrip-
tion compiler (back-end). By keeping front-end and back-

1ipc-2020.hierarchical-task.net

Hype

parsers extensions compilers

domain.*

HDDL

problem.*

PDDL

JSHOP

Typredicate

Patterns

. . .

Ruby
(HTN)

Pullup

Dejavu

PDDL

JSHOP

domain.*'

problem.*'

DOT

Markdown

HyperTensioN

Figure 1: Hype acts as a three-stage compiler before linking
Ruby outputs with the HyperTensioN planner.

end separate it was also possible to add a Ruby compiler
to generate code compatible with our implementation of a
lifted Total Forward Decomposition (TFD) (Ghallab, Nau,
and Traverso 2004, chapter 11) planner. This compilation
approach is very similar to that in JSHOP (Ilghami and Nau
2003). Parser and compiler modules share an Intermediate
Representation (IR) that represents the planning instance
data, which middle-end extensions can further process. Ex-
tensions fill gaps between description languages, analyze or
optimize descriptions, independent of the target planner/out-
put language.

This level of flexibility facilitates developing support for
new languages, while remaining compatible with the already
available extensions. For example the DOT (Ellson et al.
2001) compiler for debugging and the HDDL (Höller et al.
2020a) parser for the IPC. As the project grew, the three-
stage compiler and the TFD planner modules split in two, as
shown in Fig. 1. The Hype tool controls module execution
at each stage, allowing multiple middle-ends to run, even re-
peatedly, before compilation into the target representation.
The HyperTensioN TFD planner completes the Ruby (HTN)
compiler output to finish this pipeline with the plan output.
Eventually, we extended the core HyperTensioN search pro-
cedure to a variety of other planning tasks, including search
on hybrid symbolic-numeric domains (Magnaguagno and
Meneguzzi 2020).

The 10th International Planning Competition – Planner and Domains Abstracts

5

Domain transformation
To improve planning speed the compiler was optimized to
compress the state structure by removing rigid predicates
and treating them as “constant information”. More impor-
tantly, we developed extensions to improve the IR to sup-
port: (1) better unification exploiting type information; (2)
early testing of rigid parts of method/action preconditions
during decomposition; and (3) a cycle detection mechanism.

Typredicate
This extension involves constraining the substitutions at-
tempted on variables occurring in predicates, by making bet-
ter use of constant/parameter types (if the domain expert has
not already done so). For example, suppose the predicate
(at ?obj – object ?pos – position) is defined in the domain,
which is used in the action (move ?obj – vehicle ?pos – posi-
tion) to both check and update a vehicle’s position. Suppose
also that we are given the following type hierarchy: “person
vehicle position – object”. Then, though the move action will
never require nor modify the position of a person, the ?obj
variable occurring in the precondition of the action may still
be substituted by constants of type person, as ?obj is defined
in the predicate to be of the parent type object. Since con-
stants of type person and vehicle are mutually exclusive by
virtue of being subtypes of the same parent type, we pre-
clude such substitutions by specializing (at ?obj – object
?pos – position) into predicates (at-vehicle ?obj – vehicle
?pos – position) and (at-person ?obj – person ?pos – posi-
tion), and replacing occurrences of (at ?obj ?pos) with the
appropriate specialized predicates in the domain, initial state
and goal. Typredicate currently only specializes predicates
to the leaves of the type hierarchy, but it can be straightfor-
wardly extended to specialize to intermediate levels. Typred-
icate is not limited to typed domains, as it can infer types
based on unary rigid predicates contained in preconditions,
e.g. (person ?obj). By specializing predicates we make plan-
ning more efficient, as unification uses smaller (disjoint) sets
of objects, i.e., without extraneous objects, while also mak-
ing the Pullup extension more “complete”.

Pullup
The Pullup extension implements the main optimization
technique that underpins HyperTensioN’s performance by
“pulling up” preconditions in the hierarchy. A literal in the
precondition (which is a conjunction/set of literals) of an ac-
tion occurring in a method is added (after variable substitu-
tions) to the precondition of the method if the literal is not
possibly brought about by an earlier step in the method, i.e.,
any solution for the method will require the literal to hold
at the start; a literal is deemed to be possibly brought about
(cf. “mentioned” (de Silva, Sardina, and Padgham 2016)) by
a step if there is a literal asserted by an action yielded by the
step s.t. the two literals have the same predicate symbol.2 We
pull up method preconditions as follows. A (possibly pulled
up) literal in the precondition of a method is deemed to be
part of the precondition of the task that is accomplished by

2We also implemented a stronger notion, closer to that of “men-
tioned”, but saw no improvement w.r.t. the sample IPC domains.

the method if the literal is “locally rigid”, i.e., shared by all
method preconditions related to the same task. Given a plan-
ning problem, each iteration of the algorithm pulls up literals
by one level, starting from preconditions of actions, and the
algorithm terminates when it reaches a fixed point–when no
literals “moved” in the previous iteration.

A literal that is always pulled up from an action/method
precondition is removed from it, as the literal will be tested
earlier in the decomposition. Moreover, using the planning
problem, literals that are always true (w.r.t. the problem)
are removed from preconditions based on the unifications
that are possible, and actions/methods that contain contra-
dictions in preconditions are removed together with their as-
sociated “branches”. Interestingly, branch removal may en-
able pulling up additional literals by exposing “hidden” (see
(de Silva, Sardina, and Padgham 2016)) rigid literals.

Dejavu

Some domains may have methods with direct recursion,
where a method includes the same task that it decomposes,
or indirect recursion, requiring further decomposition before
the (same) task is encountered. Without “visited” predicates
used by a domain expert to mark (register) and query vis-
ited partial states, such domains can induce an infinite loop
for a TFD (Ghallab, Nau, and Traverso 2004) search proce-
dure. Dejavu transforms the domain by adding “unobserv-
able” primitive tasks (that are not part of valid plans) to mark
and unmark the fact that a particular non-primitive task is
being decomposed, and predicates to detect when the task is
being recursively (re)attempted. Information relating to such
cycles is stored across decomposition branches using an ex-
ternal cache structure, as the state loses the marked infor-
mation upon backtracking. The cache saves which methods
and unifications have been explored in previous branches to
avoid repeating decompositions that previously led to fail-
ure. Domains with cyclic tasks without parameters lack the
required information to cache the task signature, which con-
tains the variable bindings for the method decomposing the
task. In such domains we fallback to a full state comparison
with previously visited states at each cyclic task. HyperTen-
sioN can still detect stack overflows, and safely backtrack
in case the cycle detection mechanism fails. Dejavu, while
limited, proved critical for HyperTensioN’s performance, as
it allows TFD to efficiently drive search, while avoiding its
key limitation in recursive domains.3

Comparison

We now compare the improvements obtained by the above
extensions w.r.t. some sample (pre-competition) and ac-
cepted IPC 2020 domains. We selected 4 domains in which
the improvements were more visible. The experiments were
run on Windows 7, on an Intel E5500 2.8GHz CPU with
3.25GB of RAM, using a 60s time-out.

3We only compare Dejavu’s ability to detect indirect recursion,
as detecting direct recursion is currently always active.

The 10th International Planning Competition – Planner and Domains Abstracts

6

Woodworking
Woodworking (Bercher, Keen, and Biundo 2014) is based
on a benchmark from earlier IPCs. It describes tasks for
working with wood, such as cutting, polishing and finishing.
With Pullup, two extra problems were solved within our time
limit, with one of them taking less than a second as shown
in Fig. 2. Many problems in this domain seemed to require
selecting the right values among many available objects be-
fore continuing exploration, as otherwise too much time was
spent on backtracking, causing time-out.

0

10

20

30

40

50

60

0 2 4 6 8 10 12

T
im

e
(s

)

Problem (index)

No extensions
Typredicate
Pullup
Typred+Pullup
Typred+Pullup+Dejavu

Figure 2: Time in seconds to solve Woodworking problems.

Rover
Rover involves robots navigating a planet, collecting infor-
mation and sending it to a lander. The HTN domain was
developed for SHOP (Nau et al. 1999) based on problem
instances from earlier IPCs. Pullup improves the results for
Rover, although most instances are solvable even without
extensions; only one reaches the time-out as shown in Fig. 3.

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

)

Problem (index)

No extensions
Typredicate
Pullup
Typred+Pullup
Typred+Pullup+Dejavu

Figure 3: Time in seconds to solve Rover problems.

Transport
Transport (Behnke, Höller, and Biundo 2018) describes a
domain where delivery trucks with limited capacity must
pick and drop packages at specific cities connected by a road
network. Transport is one of the few domains where each
extension shows an impact on planning time, as shown in
Fig. 4. Typredicate is able to specialize the “at” predicate,
avoiding some unifications with non-vehicle objects. Pullup
is able to move important constraints only defined in the

leaves of the HTN structure, e.g. the need for a road between
two cities in order to drive between them. Note that this do-
main does not contain method preconditions. With Typredi-
cate and Pullup combined the Transport instances are solv-
able in less than 0.2s.

0

10

20

30

40

50

60

0 5 10 15 20 25 30

T
im

e
(s

)

Problem (index)

No extensions
Typredicate
Pullup
Typred+Pullup
Typred+Pullup+Dejavu

Figure 4: Time in seconds to solve Transport problems.

Snake
In Snake,4 one or more snakes need to move to clear lo-
cations or strike nearby mice in a grid/graph-based world.
The domain benefits from Dejavu, i.e., the planner avoids
unifications that recursively expands the same task, which
may start an infinite loop. Since Dejavu’s direct recursion
detection is always used, its effect is not visible in the graph,
but required to avoid reaching the same positions repeatedly.
Observe from Fig. 5 that Pullup shows a bigger improve-
ment in planning time in the most complex instances.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

)

Problem (index)

No extensions
Typredicate
Pullup
Typred+Pullup
Typred+Pullup+Dejavu

Figure 5: Time in seconds to solve Snake problems.

The IPC release of HyperTensioN was not able to parse
the Entertainment and Monroe domains correctly. With the
parser fixed, new results were obtained on the same ma-
chine, which matched the IPC samples’ timings. The first
5 of 12 Entertainment instances were solved in under 1s, the
sixth in 42s, the seventh in 740s, and the eighth in 235s; oth-
ers exceeded the IPC time limit (1800s). All Monroe-Fully-
Observable instances were solvable, most in a few seconds
and the last two in 32s. The Monroe-Partially-Observable in-
stances were not solvable within the time limit. The results

4https://github.com/Maumagnaguagno/Snake

The 10th International Planning Competition – Planner and Domains Abstracts

7

Table 1: HyperTensioN’s (Hype) fixed and IPC results.
Domain(instances) Fixed Hype Lilotane PDDL4J-TO
AssemblyHierarchical(30) 3 3 5 2
Barman-BDI(20) 20 20 16 11
Blocksworld-GTOHP(30) 16 16 22.1 16
Blocksworld-HPDDL(30) 30 30 1 0
Childsnack(30) 30 30 29 20.9
Depots(30) 24 24 23.4 23
Elevator-Learned(147) 147 147 147 2
Entertainment(12) ∼5.9 0 4.6 4.6
Factories-simple(20) 3 3 4 0
Freecell-Learned(60) 0 0 7.7 0
Hiking(30) 25 25 21.3 17
Logistics-Learned(80) 22 22 43.2 0
Minecraft-Player(20) 5 5 1 1
Minecraft-Regular(59) 57.1 57.1 29.2 23
Monroe-FO(20) ∼17.7 0 20 20
Monroe-PO(20) 0 0 20 1
Multiarm-Blocksworld(74) 8 8 4 0
Robot(20) 20 20 11 6
Rover-GTOHP(30) 30 30 21.3 27.5
Satellite-GTOHP(20) 20 20 15 20
Snake(20) 20 20 17.1 20
Towers(20) 17 17 10 16
Transport(40) 40 40 35 33.2
Woodworking(30) 7 7 30 6
Total(892) ∼567.7 544.1 537.9 270.2
Normalized(24) ∼14.88 13.50 11.60 7.47

are shown in Table 1 with the highest values (sometimes ob-
tained by two participants) in bold. Only participants who
obtained the highest value at least once were included.

Conclusion
This paper presented HyperTensioN, an approach to plan-
ning using a three-stage compiler designed to support op-
timizations in multiple domain description languages. The
flexibility introduced by the front and back-end modules
makes it easy to support new domain description languages,
while the middle-end pipeline opens the door for multi-
ple transformation and analysis tools to be executed be-
fore planning. The key to its performance in the IPC is
a set of domain transformation techniques that replicates
domain-knowledge optimizations commonly used to speed
up search in previous HTN planners such as JSHOP2 (Il-
ghami and Nau 2003), as well as the optimizations often
used by agent interpreters, e.g. (Thangarajah, Padgham, and
Winikoff 2003). With our domain transformations it was
possible to not only improve the HTN structure for SHOP-
like (blind Depth First-Search) planners using Typredicate
and Pullup, but also to avoid recomputing parts of complex
combinatoric domains such as Transport and Snake using
Dejavu. Future work includes stronger tree modification-
s/specializations, support for more complex domain descrip-
tions, and a compilation to a low-level language to obtain a
native planner executable.
Acknowledgements: Felipe Meneguzzi acknowledges sup-
port from CNPq with projects 407058/2018-4 (Universal)
and 302773/2019-3 (PQ Fellowship).

References
Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT-
Totally-Ordered Hierarchical Planning Through SAT. In
AAAI, 6110–6118.
Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017. An
Admissible HTN Planning Heuristic. In IJCAI, 4384–4390.
IJCAI.
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid planning
heuristics based on task decomposition graphs. In SoCS.
de Silva, L.; Lallement, R.; and Alami, R. 2015. The HATP
hierarchical planner: Formalisation and an initial study of its
usability and practicality. In IROS, 6465–6472.
de Silva, L.; Sardina, S.; and Padgham, L. 2016. Summary
information for reasoning about hierarchical plans. In ECAI,
1300–1308.
Ellson, J.; Gansner, E.; Koutsofios, L.; North, S. C.; and
Woodhull, G. 2001. Graphviz—open source graph draw-
ing tools. In GD, 483–484. Springer.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning: theory & practice. Elsevier.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018.
A Generic Method to Guide HTN Progression Search with
Classical Heuristics. In ICAPS.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020a. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
AAAI, 9883–9891. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020b.
HTN Planning as Heuristic Progression Search. JAIR
67:835–880.
Ilghami, O., and Nau, D. S. 2003. A General Approach
to Synthesize Problem-Specific Planners. Technical Report
CS-TR-4597, Maryland University, Dept of Computer Sci-
ence, College Park, Maryland.
Magnaguagno, M. C., and Meneguzzi, F. 2017. Method
composition through operator pattern identification. KEPS
2017 54.
Magnaguagno, M. C., and Meneguzzi, F. 2020. HTN Plan-
ning with Semantic Attachments. In AAAI. AAAI Press.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL-
the planning domain definition language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control.
Nau, D.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In IJCAI, 968–
973.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN plan-
ning system. JAIR 20:379–404.
Thangarajah, J.; Padgham, L.; and Winikoff, M. 2003. De-
tecting & Avoiding Interference Between Goals in Intelli-
gent Agents. In IJCAI, 721–726.

The 10th International Planning Competition – Planner and Domains Abstracts

8

Lifted Logic for Task Networks:
TOHTN Planner Lilotane in the IPC 2020

Dominik Schreiber
Karlsruhe Institute of Technology

dominik.schreiber@kit.edu

Abstract

We present our contribution to the International Planning
Competition (IPC) 2020. Our planner Lilotane builds upon
ideas established by Tree-REX and encodes a Totally Ordered
Hierarchical Task Network (TOHTN) planning problem into
incremental formulae of propositional logic (SAT). Lilotane,
however, instantiates reductions and actions lazily and mini-
malistically without the need for full grounding, hence accel-
erating the planning process significantly. We discuss the re-
sults of the IPC and conclude that Lilotane, scoring second in
the Total Order track, is an overall competitive system, what
demonstrates the viability of our approach and its significance
for future research.

Overview
In this report we present Lilotane (’lı·lo·teın, Lifted Logic for
Task Networks), the first Satisfiability (SAT) based planner
for Totally Ordered Hierarchical Task Network (TOHTN)
problems that operates on a lifted planning problem. The de-
sign of Lilotane is heavily motivated by the observation that
grounding an HTN planning problem (Ramoul et al. 2017;
Behnke et al. 2020) induces an unavoidable worst-case com-
binatorial blowup with respect to the input size, and that
this blowup can hinder SAT-based HTN planners to scale to
larger problems even if they are logically of simple nature.
Lilotane, by contrast, fully circumvents the stage of ground-
ing and instead encodes a lifted problem representation into
propositional logic.

The general planning procedure of our planner is similar
to the planning pipeline known from its predecessor Tree-
REX (Schreiber et al. 2019) as well as from totSAT (Behnke,
Höller, and Biundo 2018):

1. The formal description of a planning problem Π =
(D, sI , T), where D is an HTN planning domain, sI is an
initial state, and T is a sequence of initial tasks, is parsed
and preprocessed in some way.

2. Propositional logic clauses describing the problem’s up-
most yet unencoded hierarchical layer Ll are added, a
fully expanded task network is assumed, and a SAT solver
is run on the resulting formula.

3. If the solver finds a model, a plan is decoded from the sat-
isfying assignment to the Boolean variables and returned.
Otherwise, go to 2.

Algorithm 1: Lilotane Procedure (simplified)
Input: Π = (D, sI , T)
Result: Plan π

1 Preprocess Π; // parsing, simplification
2 H := 〈〉;
3 L0 := 〈 CreateInitialPosition(T, sI) 〉;
4 Encode(L0); // encode first layer
5 H := H ◦ 〈L0〉;
6 for l = 0, 1, . . . do

// instantiate new layer
7 Ll+1 := 〈〉;
8 S := (sI , ∅); // reachable facts
9 x′ := 0;

10 for x = 0, . . . , |Ll| − 1 do
// generate child positions of Pl,x

11 el,x := max{1,max{|subtasks(r)| | r ∈ Pl,x}};
12 for z = 0, . . . , el,x − 1 do
13 Pl+1,x′ := Instantiate(Pl,x, z, S);
14 Ll+1 := Ll+1 ◦ 〈Pl+1,x′〉;
15 S := S ∪ possibleFactChanges(Pl+1,x′);
16 x′ := x′ + 1;
17 end
18 end

// encode new layer
19 Encode(Ll+1);

// finalize layer, attempt to solve
20 H := H ◦ Ll+1;
21 result := Solve(H);
22 if result is SAT then
23 return Decode(H, result);
24 end
25 end

The main difference between previous approaches and
Lilotane is that the latter avoids the complete grounding of
the problem in step 1; instead we perform lazy instantiation
of operators and methods in step 2, just in time for when they
are needed. We avoid to instantiate all free arguments of an
action or a reduction occurring at some place of the hierar-

The 10th International Planning Competition – Planner and Domains Abstracts

9

ε εa
ε

r

ε

r′

ε ε

a

a

a
r′
r

x

x′ x′ + 1 x′ + 2

l

l + 1

a
r′
r

x
l

Figure 1: Sketch of Lilotane’s instantiation procedure.
Above: Position x at layer l contains three operations (re-
ductions r and r′, and action a) with different possible chil-
dren. Below: New positions x′, . . . , x′ + 2 are appended to
layer l + 1 by aggregating the respective possible children.

chy. Instead we introduce pseudo-constants whose seman-
tics we define directly in propositional logic. In this report,
we briefly elaborate on these techniques in the upcoming
sections, provide some technical insights, discuss the perfor-
mance of Lilotane within the IPC, and provide a brief con-
clusion and outlook. For a more detailed presentation and
discussion of the work at hand we refer to Schreiber (2021).

Instantiation
The base algorithm of our approach is illustrated in Alg. 1.
After receiving the lifted problem description from pan-
daPIparser, we instantiate the problem’s hierarchy from top
to bottom, i.e., we begin with an initial layer following from
the problem description (line 3) and then construct layer l+1
on the basis of layer l. Each operation (i.e., action or reduc-
tion) at some position of layer l can induce one or several
new positions at layer l + 1. Each such new position may
again feature a variety of different operations, as illustrated
in Fig. 1. Only one such operation at each position will be
chosen by a SAT solver for the final plan. This approach is
based on Tree-REX (Schreiber et al. 2019) where the same
layout of layers was used but its construction was based on
a problem’s full grounding. By contrast, we instantiate op-
erations just when needed to achieve some subtask, and we
preserve free arguments of methods instead of instantiating
them with all possible combinations of constants.

As we instantiate each layer in chronological order (“from
left to right”), we can maintain sets S of positive and nega-
tive facts which may possibly occur, beginning with the ini-
tial state (line 8) and adding any direct or indirect effects
of inserted operations (line 15). We can use these fact col-

lections to discard any operations with a precondition that
turns out to be impossible to achieve in line 13. In line 15
we determine the possible effects of a given operation us-
ing a conservative overestimation which we compute by a
traversal of the (lifted) recursive children of a method. In ad-
dition, we logically infer new preconditions for a method by
recursively aggregating the preconditions and effects of its
possible children: This helps us to profit from the described
pruning methods even on domains which do not natively fea-
ture any method preconditions.

By allowing for free arguments to remain in an operation,
we significantly reduce the number of instantiated actions
and reductions. Consider an example task (navigate
?rover ?from ?to)which, according to its parent task
(investigate A), evaluates to (navigate ?rover
?from A). Performing a conventional instantiation we
receive tasks (navigate R1 B A), (navigate R1
C A), (navigate R1 D A), (navigate R2 B A)
and so on. Our algorithm avoids this blowup by instantiat-
ing only one task: (navigate α β A). Thereby, α and
β are new symbols which did not occur in the problem be-
fore and which we call pseudo-constants. With our novel
SAT encoding we can let the solver decide which partic-
ular constant to substitute each pseudo-constant with. Our
instantiation algorithm introduces a pseudo-constant when-
ever the valid domain of a free variable is larger than one,
i.e., whenever there is a nontrivial choice to make regarding
the substitution.

We introduced several further techniques to increase per-
formance, such as (i) the sharing of pseudo-constants among
multiple operations and the notion of an operation dominat-
ing another operation if it represents a superset of ground
operations; (ii) the retroactive pruning of any subtree of op-
erations which turned out to be impossible to achieve; (iii)
the transformation of certain reductions into equivalent ac-
tions; and more.

Encoding
The general structure of our propositional logic encoding
is an adaptation of the Tree-REX encoding (Schreiber et al.
2019). The main difference is that we now must deal with ac-
tions, reductions, and facts containing pseudo-constants. We
now provide some central, slightly simplified clause defini-
tions for illustration purposes and refer to Schreiber (2021)
for the complete specification.

As in previous work we use one Boolean variable for each
occurring reduction, action, and fact per position per layer
of the problem. These variables are assigned regardless of
whether the object contains pseudo-constants or not. Also,
we have one variable primitive(l, i) representing whether
position i at layer l features a primitive operation, i.e., an
action and not a reduction.

In addition, we introduce global variables [κ/c] that corre-
spond to substituting some pseudo-constant κ with an actual
constant c. For each pseudo-constant κ we add clauses

∨

c∈dom(κ)

[κ/c] ∧
∧

c1 6=c2∈dom(κ)

¬[κ/c1] ∨ ¬[κ/c2],

The 10th International Planning Competition – Planner and Domains Abstracts

10

i.e., exactly one of the possible substitutions of κwith a con-
stant from its possible domain, dom(κ), must hold.

Next, we define the semantics of facts containing pseudo-
constants, which we call pseudo-facts. Let fp be a pseudo-
fact and for each of its pseudo-constants κ let cκ be one of
the possible constants to be substituted such that substituting
each κ with cκ leads to ground fact f .

(∧

κ∈fp
[κ/cκ]

)
⇒
(
holds(fp, l, i)⇔ holds(f, l, i)

)

In words, we enforce a pseudo-fact to be equivalent to the
ground fact it corresponds to when performing particular
substitutions. This rule does imply that we need to fully in-
stantiate all potentially occurring facts at the respective po-
sition; yet, we claim that there are commonly much fewer
ground facts than there are actions or reductions.

Frame axioms are encoded only for ground facts, as the
meaning of pseudo-facts is well-defined by the previous sets
of clauses. We add clauses as follows:

(i) If a fact f changes its value, then either the position
is non-primitive, or some action directly supports this fact
change, or some pseudo-action indirectly supports the fact
change. (ii) If fact f changes its value and action a from the
indirect support is applied, then some set of substitutions
must be active which unify some effect fp of a with f .

Note that for (ii), in the general case a transformation of
a Disjunctive Normal Form (DNF) into Conjunctive Nor-
mal Form (CNF) is required when a features many different
pseudo-facts as effects which can be unified to f . We use a
simple compilation which builds a tree of literals and then
obtains CNF clauses by traversing it.

Compared to a SAT encoding based on a ground repre-
sentation, there are some subtle new edge cases to consider.
For instance, we need to add further clauses which constrain
the sets of possible substitution combinations (due to invari-
ant preconditions which we do not encode directly), retroac-
tively restrict the domain of a pseudo-constant to incorporate
argument type restrictions of a child operation, and condi-
tionally disable certain negative action effects if an equiva-
lent fact also occurs as a positive effect in the action.

We consider our new encoding to be structurally more
complex than that of Tree-REX but observed empirically that
our approach not only significantly cuts the time spent for
instantiation but also leads to much smaller formulae, often-
times by orders of magnitude.

Technical Remarks
Our planner is written from scratch in C++ (i.e., we did
not reuse any code from previous planners). In the compe-
tition version we use SAT solver Glucose (Audemard and
Simon 2009) with kind permission of the authors: Empir-
ically we found this solver to work best on the class of
formulae generated by our approach. We build upon pan-
daPIparser (Behnke et al. 2020) for parsing planning prob-
lems specified in HDDL and for performing light prepro-
cessing tasks on the problem’s lifted representation. Lilotane
is free software licensed under the GNU General Public
License (GPL) v3.0; additional legal constraints may ap-
ply depending on the licensing of the particular SAT solver

0 250 500 750 1000 1250 1500 1750

Run time t / s

0

100

200

300

400

500

#
in

st
an

ce
s

so
lv

ed
in
≤
t

s

HyperTensioN

Lilotane

PDDL4J-TO

PDDL4J-PO

SIADEX

pyHiPOP

Figure 2: Run times overview of the IPC Total Order track.
Each point (t, y) of participant p corresponds to an instance
solved at least once by p in t seconds on average.

Lilotane is compiled with. Our software is available at
github.com/domschrei/lilotane.

Post-IPC Discussion
We now discuss the results of the International Planning
Competition (IPC) 2020.

A large set of diverse benchmark problems from various
authors was gathered for the IPC, what will certainly facili-
tate thorough evaluations of TOHTN planners in the future.
Compared to most previous evaluations in TOHTN planning
(Schreiber et al. 2019; Behnke, Höller, and Biundo 2018)
we observed that the peak difficulty of problems has been
increased substantially: Oftentimes a domain known from
previous evaluations was extended by ten more instances,
each of which larger than any previous instance. This means
that a planner reaching a near-perfect score on some domain
is generally a much stronger result than before.

Lilotane scored the second place in the Total Order track
of the IPC 2020. It found a plan for 548 out of 892 in-
stances in at least one out of ten repetitions and reached an
IPC score of 11.6. Lilotane was outperformed by progres-
sion search planner HyperTensioN which reached a consid-
erably better score of 13.51 and found a plan for 545 in-
stances in at least one repetition. HyperTensioN solved 84%
of its instances in less than a second. Lilotane only solved
41% of its instances in under a second and solved 84% in
under one minute. Overall we observed that while the IPC
score benefits the overall much faster execution times of Hy-
perTensioN, Lilotane performed similarly to HyperTensioN
in terms of robustness and, unlike HyperTensioN, was able
to solve some instance(s) on every single domain.

All further competitors scored significantly lower. In par-
ticular, Lilotane outperformed the only ground approach
participating, PDDL4J, on all but four domains. HyperTen-
sioN scored best on 15/24 domains and Lilotane scored best
on 8/24 domains; only a single domain (Entertainment) was
neither won by HyperTensioN nor by Lilotane.

Lilotane’s worst performances are on the domains
Blocksworld-HPDDL, Minecraft(-Player), and Multiarm-

The 10th International Planning Competition – Planner and Domains Abstracts

11

Blocksworld. We noticed that each of these domains leads
to deep and large hierarchical task networks which favor
greedy progression search planners over planners such as
Lilotane which are required to instantiate the entire hierar-
chy with all possible alternatives up to the layer where a plan
can be found. Furthermore, compiled universal quantifica-
tions in Blocksworld-HPDDL and Multiarm-Blocksworld
lead to many preconditions per operator which are compara-
bly costly for our encoding.

By contrast, our planner excelled on domains such as
Monroe (complex goal and task recognition problems on
top of a disaster management domain, see Höller et al.
2018) and Woodworking. The latter domain encompasses
large manifacturing and processing tasks and notably fea-
tures a high number of arguments per operator and method.
As our approach keeps free arguments lifted, it can handle
this domain very well. We are also pleased to observe that
Lilotane scored well on the Childsnack domain: This do-
main is a textbook example for a logically trivial domain
which leads to huge ground representations. Hence, prior
SAT-based approaches have considerable problems with this
domain while our approach solves even large problems with
relative ease.

Although the IPC was an agile competition where only
run times were of interest, we also want to shed light on
the length of the plans found by the best competitors (with
respect to the number of actions in a plan). We found that
Lilotane produced considerably shorter plans than the win-
ner: We filtered out all 439 instances for which both Lilotane
and HyperTensioN found a plan on some runs and then aver-
aged the found plan length over all successful runs for each
instance. On 264 instances Lilotane found shorter plans on
average, on 77 instances the found plans are of equal aver-
age length and on 98 instances HyperTensioN found shorter
plans on average. Summed up over all these instances, the
number of actions reported by HyperTensioN corresponds
to 229% of the number of actions reported by Lilotane. This
significant difference in plan quality can be explained by the
careful iterative deepening procedure of Lilotane: Any found
plan length is bounded by the size of the layer where it was
found, and Lilotane finds a plan on the very first layer where
any plan can be found.

Conclusion and Outlook
We presented our submission to the IPC 2020 named
Lilotane which is the first lifted SAT-based HTN planning
system. Lilotane showed promising performance and con-
vinced on a large and diverse set of benchmarks with respect
to its robustness and the high-quality plans it finds. As such,
the performance of Lilotane in the IPC 2020 demonstrates
that SAT-based HTN planning without grounding is not only
viable, but in fact a highly appealing approach if done care-
fully. We expect these results to open up new perspectives
for SAT-based planning in related problem classes. We refer
to a separate article (Schreiber 2021) which discusses the re-
search at hand in more detail, provides proofs of correctness,
and describes further improvements of Lilotane integrated
after the planner submission deadline of the IPC.

Acknowledgments
This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 882500).

The author would like to thank Marvin Williams for his
persevering exploration of lifted SAT encodings for classical
planning (Williams 2020), motivating the author to pursue a
lifted SAT encoding for HTN planning as well.

Furthermore, the author thanks the IPC organizers for
their diligent work on this important competitive event and
specifically Gregor Behnke for fruitful discussions regard-
ing the results of the IPC 2020 and for providing an HDDL
parser the author made thankful use of.

Last but not least, many thanks to Damien Pellier, Hum-
bert Fiorino, and Tomáš Balyo who introduced the author to
the exciting topic of SAT-based planning and HTN planning.

References
Audemard, G., and Simon, L. 2009. Predicting learnt
clauses quality in modern SAT solvers. In Twenty-first In-
ternational Joint Conference on Artificial Intelligence, 399–
404.
Behnke, G.; Höller, D.; Schmid, A.; Bercher, P.; and Biundo,
S. 2020. On succinct groundings of HTN planning prob-
lems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, 9775–9784.
Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT –
totally-ordered hierarchical planning through SAT. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 6110–6118.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2018.
Plan and goal recognition as HTN planning. In 30th In-
ternational Conference on Tools with Artificial Intelligence,
466–473. IEEE.
Ramoul, A.; Pellier, D.; Fiorino, H.; and Pesty, S. 2017.
Grounding of HTN planning domain. International Journal
on Artificial Intelligence Tools 26(05):1760021.
Schreiber, D.; Pellier, D.; Fiorino, H.; et al. 2019. Tree-
REX: SAT-based tree exploration for efficient and high-
quality HTN planning. In Proceedings of the Twenty-
Ninth International Conference on Automated Planning and
Scheduling, 382–390.
Schreiber, D. 2021. Lilotane: A lifted SAT-based approach
to hierarchical planning. Journal of Artificial Intelligence
Research 70:1117–1181.
Williams, M. 2020. Partially instantiated representations for
automated planning. Master’s thesis, Karlsruhe Institute of
Technology.

The 10th International Planning Competition – Planner and Domains Abstracts

12

PYHIPOP– Hierarchical Partial-Order Planner

Charles Lesire1 and Alexandre Albore2

ONERA/DTIS, University of Toulouse
2 av. Edouard Belin, 31055, Toulouse, France

1charles.lesire@onera.fr
2alexandre.albore@onera.fr

Introduction
PYHIPOP is a hierarchical partial-order planner, aimed at
solving Hierarchical Task Network (HTN) planning prob-
lems. The current planner version is a re-coding of a ver-
sion originally developed by Patrick Bechon (Bechon et
al. 2014). In Bechon’s original work, HIPOP solved HTN
problems with Task Insertion (TI-HTN), meaning that in-
serting new tasks in addition to the pure HTN decomposi-
tion was allowed during the search. Bechon proposed some
heuristics for solving such problems using a hybrid algo-
rithm: a POP (Partial Order Planning) algorithm with hier-
archical task decomposition. HIPOP has also been extended
to manage plan repair (Bechon et al. 2015), and multi-robot
mission planning repair with communications losses (Be-
chon, Lesire, and Barbier 2020).

PYHIPOP differs from the original HIPOP in:
• PYHIPOP is coded in pure Python3; this choice has been

made to ease the integration with other tools for plan re-
pair or interactive planning;

• PYHIPOP currently manages HTN problems only – no
Task Insertion is allowed;

• PYHIPOP’s preprocessing and grounding steps have been
improved to use recent works from the state of the art;

• PYHIPOP’s heuristics have been adapted, as its original
heuristics worked well for TI-HTN, but not so well for
pure HTN problems.

Implementation details
In the HTN paradigm, plans are not considered as totally
ordered sequences of actions. When searching in the plan
space, plans are rather a partially ordered sequence of ac-
tions, that the planner orders so to generate a solution plan.

HTN planning relies on the concept of task decomposi-
tion (Erol, Hendler, and Nau 1994). While the goal in clas-
sical (STRIPS-style/non-hierarchical) planning is to find an
action sequence that drives the domain from an initial state
to a goal final state, the goal in hierarchical planning is to
find a refinement of an initial partial plan into a plan that
contains no abstract tasks, nor flaws.

The Hybrid Planning domains D considered here, consist
of a set of fluents, a finite set of abstract and primitive tasks,

and a set of methods M that describe the different ways an
abstract task can be decomposed. The goal is either a subset
g of the fluents of D, or a goal task top to decompose.

A partial plan Π is a tasks tree with its root in top. Partial
plans may contain primitive and abstract tasks.

Given the constraints of D, a natural ordering can be de-
termined between tasks, such that for two instances u ≺ v, u
is first task that supports the fluent f , while v is the task that
needs f as a precondition. This defines a causal link (u, f, v)
between the two tasks.

In a partial order plan, we consider three kinds of flaws.
Namely, open links, where no causal link guarantees the pre-
condition of a task in the plan; threats, when a task could
delete a fluent in a causal link while the link is still active;
abstract tasks, when a non-primitive task is present. We will
see that managing the flaws, and selecting the ones to be
refined, is central for the planning algorithm performance.

Preprocessing and grounding
During the preprocessing phase, we ground all the opera-
tors, and we smartly prune the set of grounded operators,
and compute some information useful during the search.

The proprocessing steps are the following:
• as often done in classical planning, we compute all the

possible literals of the problem, by grounding the predi-
cates on the objects, and we determine which literals can-
not be modified by any operator (the rigid literals);

• all operators (actions, tasks, methods) are then grounded;
we remove the groundings that are impossible due to
known rigid literals (including equality tests), similarly
to Behnke et al. (2020);

• we compute the hadd heuristics for literals and actions,
based on the algorithm proposed by Vidal (2011);

• we compute the Task Decomposition Graph (TDG)
(Bercher et al. 2017), and from it we prune ac-
tions/methods whose preconditions are not reachable ac-
cording to the hadd relaxation, methods and tasks whose
subtasks and methods have been respectively removed;

• based on the TDG, we compute: 1) the minimal cost when
decomposing a task hTDGc

, as proposed in (Bercher et
al. 2017); 2) the maximal hadd cost in a decomposition,

The 10th International Planning Competition – Planner and Domains Abstracts

13

noted hmax
add ; 3) an optimistic task effect, consisting in the

union of all effects of the actions in any possible task
decomposition; this optimistic effect is inspired from an-
gelic HTN planning (Marthi, Russell, and Wolfe 2008).

Search algorithm

The search of a solution plan is performed in the plan space.
Any valid instance of the methods and tasks – meaning that
they respect the ordering constraints of the problem – is a
solution plan for a problemD: all preconditions will be sup-
ported by a causal link that is not threatened, and all abstract
tasks will be decomposed into primitive tasks. We designed
a domain-independent search strategy, where a search node
is given by a partial plan and an ordered set of its associated
flaws (open links, threats, abstract flaws). The main search
loop is described in Alg. 1.

Algorithm 1: Solve algorithm
1 OPEN ←− {top};
2 while OPEN not empty do
3 n←− OPEN.pop();
4 if n.flaws 6= ∅ then
5 return n.plan; // solution found

6 f ←− n.flaws.pop();
7 for r ∈ resolvers(f, n.plan) do
8 OPEN ←− r;

9 return Failure;

The search makes use of an Open list (a heuristically or-
dered queue representing the fringe of the search) and a
closed list (not reported in Alg. 1) to detect and prune al-
ready visited nodes. In line 1, the Open list is populated with
the initial node, including the initial partial plan and a single
abstract flaw, represented by the abstract task top. In line 3,
the most promising search node n is popped from the Open
list, initially populated with the initial node top. Lines 4–
5 check and return a solution. In line 6 we select the most
promising flaw f of the current node. Lines 7–8 generate re-
solvers for f and insert the newly generated nodes r, with the
partial plans and their respective flaws, in the Open list. The
resolvers are the list of plans that solve the flaw f . An open
link is solved by finding the causal links that add a needed
precondition. A threat to an open link is solved by moving
the execution of the threatening action before or after the
open link. An abstract task is solved by refining it, instan-
tiating methods or primitive tasks. During the computation
of the resolvers, we look one step ahead, and verify if their
flaws can be solved. When generating a resolver r, we check
that: (1) threats can be solved (i.e., a threatening action has
no ordering constraint stuck to it during the causal link), (2)
open links may have a support, either from an action in the
plan, or using the optimistic task effects computed during
the grounding. If one of these condition is not fulfilled, r is
discarded.

Heuristics
To perform a search in the space of plans, we use different
heuristic functions to drive the search.

In the first place, a partial plan selection heuristic is used:
in Alg. 1 at line 3. We order the nodes in the Open list
following hadd: we sum the hadd values of the literals in
open links, and the hmax

add of abstract flaw tasks, and use
hTDGc to estimate the cumulative costs of the primitive ac-
tions in the plan. Secondly, a flaw selection heuristic is used
at line 6. Flaws are ordered following their kind. We first
solve threats, then open links, and eventually expand ab-
stract flaws, as originally proposed by Bechon et al. (2014).
Several heuristics are available to sort open links, based on
the current plan partial-order, or on hadd. The competing
implementation uses earliest: the open link from the action
coming earlier in the plan are resolved first. Abstract flaws
are also sorted using earliest: the tasks coming earlier in the
plan are decomposed first.

Empirical evaluation
PYHIPOP participated to the 2020 IPC for Hierarchical
Planning (Behnke, Höller, and Bercher 2020), in the Par-
tial Order track, and the Total Order track. Here, a domain
is partially ordered when the subtasks in all methods and in
the initial task network may have any order (in opposition
to the total-order, where the declared ordering arranges the
tasks in a sequence). The evaluation was performed on a sin-
gle CPU core, with 8 GB memory limit, and a cut-off time
of T = 30mn.

For the competition, the planners were evaluated follow-
ing a flexible metric, which evaluates better a planner when
it finds any solution to a problem faster. The score of a plan-
ner on a solved task is 1 if the task was solved within 1 sec-
ond and 0 if the task was not solved within the cut-off limits.
If the task was solved in t seconds, with 1 ≤ t ≤ T , then
its score is min(1, 1 − log(t)/log(T)). The IPC score of a
planner is the sum of its scores for all tasks.

At the Partial Order track, three planners participated:
SIADEX (de la Asunción et al. 2005) ended at the first place,
PYHIPOP at the second place, and PDDL4J-PO (Pellier and
Fiorino 2020). The latter was disqualified because it returned
an invalid plan in more than one domain. It is the Partial Or-
der track results that we’re going to comment below.

The IPC score represents quite well both the coverage and
the solving time (Table 1). For instance, in Satellite domain,
SIADEX with a score of 1.0 finds a solution for all the in-
stances (25 out of 25) within 1s, while PYHIPOP solves
less instances (9/25) and scores 0.21. On Woodworking, PY-
HIPOP solves three instances more (6/30) than SIADEX
(3/30), but employs more time, which is reflected in the
slight score difference 0.05 versus 0.03.

The number of solved instances per planner is detailed
in Table 2. During the IPC, all experiments were executed
10 times with a different seed, we consider here the maxi-
mum number of solved instances for each domain in all the
seeds. PYHIPOP performs relatively well in Satellite, UM-
Translog, and Woodworking domains. On the other hand,
the planner terminates the search without a plan in Monroe-

The 10th International Planning Competition – Planner and Domains Abstracts

14

Domain # inst. PYHIPOP SIADEX

Monroe Full. Obs. 25 0.00 0.24
Monroe Part. Obs. 25 0.00 0.05

PCP 17 0.00 0.00
Rover 20 0.05 0.70

Satellite 25 0.21 1.00
Transport 40 0.05 0.03

UM-Translog 22 0.79 1.00
Woodworking 30 0.13 0.10

total 204 1.24 3.12

Table 1: IPC scores for PYHIPOP and SIADEX. # inst. in-
dicates the total number of instances per domain.

Domain # inst. PYHIPOP SIADEX

Monroe Full. Obs. 25 0 10
Monroe Part. Obs. 25 0 2

PCP 17 0 0
Rover 20 2 14

Satellite 25 9 25
Transport 40 4 1

UM-Translog 22 21 22
Woodworking 30 6 3

total 204 42 77

Table 2: Coverage for PYHIPOP and SIADEX. # inst. is the
total number of instances per domain.

Fully-Observable, Monroe-Partially-Observable, and PCP.
It solves few instances of Rover and Transport, while it
times-out in the rest of them.

Comparing the winner and the runner-up planners perfor-
mances is not an easy task, as the coverage differs greatly.
In general, the average time for synthesising a solution plan
is lower than 1s for both planners. In the case of PYHIPOP,
then, the total time is split in parsing, grounding, and search
time. For solved instances of Satellite, search time repre-
sents almost 100% of the total time: for 2obs-2sat-2mod
search is ∼ 100s, while grounding is ∼ 1s, but for other
problems, the preprocessing and grounding can represent the
whole time, mainly because of the creation of the TDG, e.g.
in UM-Translog 19-A-TankerTraincarHub, search is ∼ 0.8s
while the grounding takes ∼ 52.6s. The bad performance of
PYHIPOP in this first grounding step is one of the reason
that a lot of instances could not be solved: PYHIPOP timed
out event before the end of the grounding. While the com-
puted TDG contains useful information for the search, the
computation of the TDG itself is greedy: a complete TDG
is first build, then the several prunings are applied one af-
ter the other. Instead, we should prune the TDG on-the-fly

while building it, improving the performance of the ground-
ing step.

The second reason why PYHIPOP performs not so well
on some instances is that the heuristics used in the com-
petition are mainly based on hadd. On the domains where
hadd is not well informed (when the hierarchy is a lot more
constraining than the establishment of causal links), then
the substask decomposition in PYHIPOP can be inefficient,
stuck in a search plateau where the open list contains a lot
of plans with very close heuristics values.

Conclusion and future work
The PYHIPOP implementation, starting from the results
by Bechon et al. (2014), extended the original POP algo-
rithm with an improved preprocessing phase, and adapting
the heuristic search for the HTN paradigm.

Future work is aimed at improving the search algorithm,
developing different heuristics to be used in a multi-queues
best-first-search setting, combining different aspects of the
heuristic evaluation of the problem, without aggregating
them into a single function. We hope that this will produce
a more efficient and flexible planner, fitting complex multi-
robot mission planning tasks.

Also, we will rewrite the grounding step in order to build
and prune the TDG on-the-fly, making PYHIPOP able to
tackle more complex instances.

In fact, PYHIPOP is thought to be applied to hierarchi-
cal robotic tasks. There, a future implementation including
planning repair will solve issues with communication losses
between robots, or sensor/actuator failures requiring mission
on-the-fly modifications. In order to address these missions,
we will re-introduce in PYHIPOP the management of du-
rative actions and time constraints, as originally addressed
in (Bechon, Lesire, and Barbier 2020).

References
Bechon, P.; Barbier, M.; Infantes, G.; Lesire, C.; and Vidal,
V. 2014. HiPOP: Hierarchical Partial-Order Planning. In
Starting AI Researchers Symp. (STAIRS).
Bechon, P.; Barbier, M.; Lesire, C.; Infantes, G.; and Vidal,
V. 2015. Using hybrid planning for plan reparation. In
European Conf. on Mobile Robots (ECMR).
Bechon, P.; Lesire, C.; and Barbier, M. 2020. Hybrid
planning and distributed iterative repair for multi-robot mis-
sions with communication losses. Autonomous Robots 44(3-
4):505–531.
Behnke, G.; Höller, D.; Schmid, A.; Bercher, P.; and Biundo,
S. 2020. On succinct groundings of HTN planning prob-
lems. In AAAI, volume 34, 9775–9784.
Behnke, G.; Höller, D.; and Bercher, P. 2020. IPC for
hierarchical planning. http://gki.informatik.uni-freiburg.de/
competition, accessed 2021-01-26.
Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017.
An admissible HTN planning heuristic. In IJCAI.
de la Asunción, M.; Castillo, L.; Fdez-Olivares, J.; Garcı́a-
Pérez, Ó.; González, A.; and Palao, F. 2005. Siadex: An

The 10th International Planning Competition – Planner and Domains Abstracts

15

interactive knowledge-based planner for decision support in
forest fire fighting. Ai Communications 18(4):257–268.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. In AAAI, vol. 94, 1123–1128.
Marthi, B.; Russell, S.; and Wolfe, J. 2008. Angelic Hierar-
chical Planning: Optimal and Online Algorithms. In ICAPS.
Pellier, D., and Fiorino, H. 2020. Totally and Partially
Ordered Hierarchical Planners in PDDL4J library. arXiv
preprint arXiv:2011.13297.
Vidal, V. 2011. YAHSP2: Keep It Simple, Stupid. In Int.
Planning Competition.

The 10th International Planning Competition – Planner and Domains Abstracts

16

Totally and Partially Ordered Hierarchical Planners in PDDL4J Library

Damien Pellier, Humbert Fiorino
Univ. Grenoble Alpes - LIG
F-38000 Grenoble, France

{Damien.Pellier, Humbert.Fiorino}@imag.fr

Abstract
In this paper, we outline the implementation of the
TFD (Totally Ordered Fast Downward) and the PFD
(Partially ordered Fast Downward) hierarchical plan-
ners that participated in the first HTN IPC competi-
tion in 2020. These two planners are based on forward-
chaining task decomposition coupled with a compact
grounding of actions, methods, tasks and HTN prob-
lems.

Introduction
The TFD (Totally Ordered Fast Downward) and PFD (Par-
tial ordered Fast Downward) hierarchical planners are based
on forward-chaining task decomposition used by the SHOP2
planner (Nau et al. 2003) coupled with a compact grounding
of actions, methods, tasks and HTN problems. Both plan-
ners accept as input HDDL (Hierarchical Domain Descrip-
tion Language) proposed by (Höller et al. 2020) and are im-
plemented on top of the PDDL4J library (Pellier and Fiorino
2018). In this short paper we present first the compact rep-
resentation used by TFD and PFD as well as the ground-
ing procedure implemented. Finally, we conclude with a
brief presentation of the search strategy implemented in both
planners.

Grounding technique
Most modern planners work with grounded representations
of the planning problem. However, planning domains are
commonly defined with a lifted description language such as
PDDL (Ghallab et al. 1998) or HDDL (Höller et al. 2020).
Thus, planning systems have to generate a grounded rep-
resentation of the lifted domain in a preprocessing step,
the objective of which is to generate the most compact
grounded representation possible without removing any ac-
tion, method or fluent needed for a solution plan. The more
compact the grounded representation is, the more efficient
is the search for a solution plan as reducing the size of the
search space speeds up search and heuristic value computa-
tion. In practice, computing a grounded representation from
a lifted representation is quite straightforward. All possible
instantiations of ground predicates, primitive actions, ab-
stract tasks and methods must be computed, and appropri-
ately replaced by their ground versions in the lifted repre-
sentation.

In the context of classical (non hierarchical) planning, the
planners FF (Hoffmann and Nebel 2001) and FastDownward
(Helmert 2006) have implemented techniques for transform-
ing lifted to ground planning representation that are still used
in many planners today. Regarding hierarchical planning,
(Ramoul et al. 2017) inspired from (Koehler and Hoffmann
1999) have been the first to propose an efficient grounding
preprocessing, and it was successfully applied to the plan-
ners proposed by (Schreiber et al. 2019). Recently, (Behnke
et al. 2020) has proposed novel techniques.

In the TFD and PFD planners, the grounding com-
bines the approches proposed by (Ramoul et al. 2017) and
(Behnke et al. 2020). It is based on 6 steps:

1. Encode the lifted domain into an integer representation,

2. Simplify the lifted representation and infer types from
predicates,

3. Instantiate the set of actions by removing unreachable ac-
tions with respect to the inertia principle (Koehler and
Hoffmann 1999),

4. Filter out actions grounded in reachability analysis (Hoff-
mann and Nebel 2001),

5. Instantiate the set of methods by removing unuseful meth-
ods with respect to the inertia principle, and by recur-
sively decomposing the initial tasks network of the plan-
ning problem. Tasks that are not reachable, i.e., tasks for
which there are no relevant ground actions or methods are
pruned.

6. Encode the actions and the methods into bitset represen-
tation.

More details on the implementation of the different in-
stantiation techniques are available in PDDL4J opensource
repository: https://github.com/pellierd/
pddl4j.

Search procedures
The non-deterministic TFD procedure for solving a HTN
planning problem is given in Algorithm 1. This procedure is
based directly on the recursive definition of a solution plan
for HTN planning problems.

The TFD procedure takes as input a problem P =
(s0, T, A,M) where s0 is the initial state, T =

The 10th International Planning Competition – Planner and Domains Abstracts

17

〈t1, t2, ..., tk〉 is a list of tasks, A the set of actions, and M
the set of methods, all in their ground representation. First,
the procedure tests if the list of tasks T is empty (line 2). In
this case, no task has to be executed, thus the empty plan is
returned. Then the procedure gets the first task t1 of the list
T . Two cases must be considered depending on the type of
t1:

Case 1. If t1 is primitive (line 3) then the procedure com-
putes the set of all the ground actions that accomplishes
t1 and that are applicable in s0 (line 4). If there is no ac-
tion (line 5), the procedure fails because no action ac-
complishes the goal task t1. Then the procedure non-
deterministically chooses an action that accomplishes the
task (line 6), and calls itself recursively on the planning
problem P ′ = (γ(s0, a1), T − {t1}, A,M) (line 7). Fi-
nally, if the recursive call to the procedure fails to find a
plan π, it returns failure (line 8); otherwise it returns the
plan that is the concatenation of a and π (line 9).

Case 2. If t1 is non-primitive (line 10) then the procedure
computes the set of ground decompositions that accom-
plish t1 and that are applicable in s0 (line 11). If there
is no decomposition to accomplish t1 (line 12) then the
procedure returns failure. Otherwise the procedure non-
deterministically chooses a decomposition d that accom-
plishes the task t1 (line 13), and recursively returns the
solution plan for the problem P ′ = (s0, subtasks(d) ⊕
〈t2, . . . , tk〉, A,M) (line 14).

Practically non-deterministic choices are made by sys-
tematically choosing the task networks with the least amount
of non-decomposed tasks. In the case where several net-
works have the same number of tasks remaining to be de-
composed, the task network containing the least number of
actions is chosen.

The search procedure implemented in PFD is almost sim-
ilar. The main difference is no longer to choose the first t1
task in the task network but to choose the first task that does
not have any predecessor task in the task network. In ad-
dition, each time case 2 applies, it is necessary to check the
consistency of the ordering constraints of the task network in
order to generate a-cyclic task networks. This check is per-
formed before line 14 by calculating the transitive closure of
the ordering constraints. The computation of the transitive
closure is based on Warshall algorithm. The complexity is
O(n3) where n is the number of tasks of the task network.

References
[Behnke et al. 2020] Behnke, G.; Höller, D.; Schmid, A.;

Bercher, P.; and Biundo, S. 2020. On succinct groundings
of HTN planning problems. In The AAAI Conference on
Artificial Intelligence, 9775–9784. AAAI Press.

[Ghallab et al. 1998] Ghallab, M.; Howe, A.; Knoblock, G.;
McDermott, D.; Ram, A.; Veloso, M.; Weld, D.; and
Wilkins, D. 1998. PDDL: The Planning Domain Defini-
tion Language. Artificial Intelligence Planning Systems.

[Helmert 2006] Helmert, M. 2006. The Fast Downward
planning system. Journal of Artificial Intelligence Research
26:191–246.

Algorithm 1: TFD(s0, T, A,M)
1 Let T = 〈t1, . . . , tk〉
2 if k = 0 then return the empty plan 〈〉
3 if t1 is primitive then
4 A′ ← the set of relevant actions for t1 and

applicable in s0
5 if A′ = ∅ then return failure
6 non-deterministically choose an action a ∈ A′

7 π ← TFD(γ(s0, a), 〈t2, . . . , tk〉, A,M)
8 if π = failure then return failure
9 else return a⊕ π

10 else if t1 is a non-primitive task then
11 M ′ ← the set of relvant methods for t1 and

applicable in s0
12 if M ′ = ∅ then return failure
13 non-deterministically choose a decomposition

m ∈M ′

14 return TFD(s0, subtasks(d)⊕ 〈t2, . . . , tk〉, A,M)

[Hoffmann and Nebel 2001] Hoffmann, J., and Nebel, B.
2001. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research
253–302.

[Höller et al. 2020] Höller, D.; Behnke, G.; Bercher, P.; Bi-
undo, S.; Fiorino, H.; Pellier, D.; and Alford, R. 2020.
HDDL: an extension to PDDL for expressing hierarchical
planning problems. In The AAAI Conference on Artificial
Intelligence, 9883–9891. AAAI Press.

[Koehler and Hoffmann 1999] Koehler, J., and Hoffmann, J.
1999. Handling of inertia in a planning system. Technical
report.

[Nau et al. 2003] Nau, D. S.; Au, T.; Ilghami, O.; Kuter, U.;
Murdock, J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: an
HTN planning system. J. Artif. Intell. Res. 20:379–404.

[Pellier and Fiorino 2018] Pellier, D., and Fiorino, H. 2018.
PDDL4J: a planning domain description library for Java. J.
Exp. Theor. Artif. Intell. 30(1):143–176.

[Ramoul et al. 2017] Ramoul, A.; Pellier, D.; Fiorino, H.;
and Pesty, S. 2017. Grounding of HTN planning domain.
Int. J. Artif. Intell. Tools 26(5):1760021:1–1760021:24.

[Schreiber et al. 2019] Schreiber, D.; Pellier, D.; Fiorino, H.;
and Balyo, T. 2019. Tree-rex: SAT-based tree exploration
for efficient and high-quality HTN planning. In Proceedings
of the Twenty-Ninth International Conference on Automated
Planning and Scheduling, ICAPS 2018, Berkeley, CA, USA,
July 11-15, 2019, 382–390.

The 10th International Planning Competition – Planner and Domains Abstracts

18

AssemblyHierarchical – Connecting Devices through Cables

Gregor Behnke
University of Freiburg

Freiburg im Breisgau, Germany
behnkeg@informatik.uni-freiburg.de

Abstract

We report on the AssemblyHierarchical domain, which en-
codes the task of connecting devices through a set of avail-
ables cables.

Introduction
We report on the idea and structure behind the domain As-
semblyHierarchical, which was part of the benchmark set of
the total order track of the IPC 2020. The AssemblyHier-
archical domain was inspired by the Assembly Assistant
(Bercher et al. 2014; 2015; 2017; 2018) developed in the
Transregional Collaborative Research Centre SFB/TRR 62
“Companion-Technology for Cognitive Technical Systems”
funded by the German Research Foundation (DFG). The as-
sistant was designed to help a (usually novice) user to set up
his or her home entertainment system. In this setting, there
are multiple signal sources (satellite receiver, VCR, DVD
player, . . .) as well as multiple signal sinks (TV, speaker,
. . .). These devices need to be connected using only the
available cables and intermediate devices (e.g. amplifiers).
Adapters might have to be used to connect a given cable
with a device. The assistant determines – based on the avail-
able cables and devices – how the cables should be used and
instructs its user to plug them into the appropriate devices.

The assistance system implemented within the SFB/TRR
62 used planning to determine how to connect cables to de-
vices. The AssemblyHierarchical domain is more general
than the original one used by the assistant in the sense that
it describes any arbitrary flow of an opaque signal from one
device to another – this can be a video, audio, network, USB,
or any other type of signal. The original domain was rather
restrictive in the allowed operations and plans. The difficulty
in modelling is due to the duality of the problem in this set-
ting – plugging in cables and transmitting a signal – which
can only be easily modelled using e.g. derived predicates,
which in turn are computationally expensive. The problem
stems from situations as follows. Consider four devices A,
B, C, and D and cables connecting A and B, B and C,
and C and D. To transmit a signal from A to D we can
plug in these cables in any order. This signal is at any time
only transmitted as far as the outgoing connection of A is

plugged in. Notably, it is possible to plug in the cable from
A to B last which will instantaneously cause the signal to be
available at D. As noted before, this can be modelled with
derived predicates or additional actions for signal transmis-
sion. The latter becomes much more complicated if we also
allow for cables to be unplugged since signals also have to
be “un-propagates”. The AssemblyHierarchical domain we
present in this paper actually supports unplugging cables.

Hierarchical planning is rather well suited to model this
task. We can use a generator-style recursion of the HTN to
allow for cables to be plugged in. The last decomposition
of this generator will result in an abstract task that checks
whether the connection has actually been established. This
can be done solely via method preconditions.

Domain
As all other domains in the IPC, the AssemblyHier-
archical domain is formulated in HDDL (Höller et al.
2020). We distinguish three types of AbstractDevices:
Devices (representing larger devices), Cables, and
Adapters. Each AbstractDevice has a number of
Ports, which have a PlugFace (either male or female)
and a PlugDirection (in, out, or both). A Port de-
scribes any point of an AbstractDevice that can be con-
nected to anoter AbstractDevice. For example a Port
of a TV might be connectable to the end of a cable – which is
also a Port. A male port can only be connected to a female
port. Further, an in-port can only be connected to an out- or
both-type port and an out-port only to an in- or both-type
port. Each Port further has a PlugType and can only be
connected to ports of the same PlugType.

To connect ports, the AssemblyHierarchical domain has
connect actions. Since the IPC 2020 does not allow for
arbitrary formulae in preconditions, there are in total eight
versions of the connect actions (named connect 1 to
connect 8). Given two ports ?p1 and ?p2 they rep-
resent the different possible configuration regarding the
PlugFace and PlugDirection of the two ports. The
domain contains an abstract task connect that can be de-
composed into any of the eight concreate connect actions.
The domain further contains a disconnect action that
disestablishes an existing port connection.

The 10th International Planning Competition – Planner and Domains Abstracts

19

The remainder of the AssemblyHierarchical do-
main features just three further abstract tasks:
ConnectDevices, ValidateDeviceConnection,
and ValidatePortConnection. ConnectDevices
ensures that a signal can be transmitted between the
two AbstractDevices ?d1 and ?d2 which are its
parameters. In order to do so, it first allows – via methods
– to generate an arbitrarily long sequence of connect
and disconnect tasks. This recursion is ended with
a method adding the action guard to the plan (for an
explanation of this action see below). The method ending
the recursion also inserts an instance of the abstract task
ValidateDeviceConnection with the two argu-
ments ?d1 and ?d2. This task starts the validation of
the (hopefully) established connection between ?d1 and
?d2. To this end, it has to select an (outgoing-)port ?p1
of ?d1 and an (ingoing-)port ?p2 of ?d2. These two
ports are then passed on as arguments to the only subtask:
ValidatePortConnection. This task validates via
a recursive decomposition that there is infact a path from
?p1 to ?p3 via properly connected cables. If so, the last
decomposition method simpy adds the action ok, which
makes the goal fact pAim true.

Since the AssemblyHierarchical domain was only used in
the total order track and all methods in the domain are to-
tally ordered, the validation of the connection always hap-
pens after all cables have been plugged in. This would
however not be the case if the initial plan was to contain
multiple ConnectDevices actions – as disconnect ac-
tions of the second, if ordered after the first in the initial
plan – might invalidate the connection established by the
first. If multiple devices shall be connected, the respective
ConnectDevices tasks must therefore be partially or-
dered in the initial plan. This however also not gurantees that
connections are only validated after the last connect or
disconect. For this purpose, the guard action adds the
fact pGuard to the state. All connect and disconect
actions have (not (pGuard)) as their preconditions and
the ValidateDeviceConnection task always occurs
strictly after the guard action. This way, validation always
happens after all connect and disconnect actions.

Instances
In the IPC 2020, only totally ordered instances of the As-
semblyHierarchical domain were included in the benchmark
set. As such, each instance contained only a single task
in its inital plan, namely one ConnectDevices task for
two specific devices. Each instance is solely described by
a natural number i. Each instance has only two true de-
vices called pc and printer. The instance numer i con-
tains i additional cables, called cableWithPlugTypeX
where X ∈ {1, . . . i}. Each cable has two bi-directional
ports. One port of cable one is male and fits into the pc’s
sole port while one port of the last cable is also male and
fits into the printer’s sole port. Apart from that, cable i
always has a port with which it can be connected to cable
i, i.e. every cable has exactly two ports. There are also i
PlugTypes named plugTypeX for X ∈ {1, . . . i}. Both
of the ports of cable i have plug type i. The pc’s sole port

always has plug type 1 and the printer always has plug
type i. For each j ∈ {1, . . . , i− 1} there is an adapter called
adapterFromPlugTypeXToPlugTypeY (with X = j
and Y = j +1) which as two ports: one of type j and one of
type j + 1.

With this setup there is only a single possible way to use
all cables and adapters to connect the pc to the printer.
As such, each problem of the AssemblyHierarchical domain
has only one “true” solution. The domain however intro-
duces a factorial amount of symmetric solutions – as the or-
der in which the cables and adapters are plugged into one
another can be choosen freely.

The domain in the IPC 2020 contained in total 30 in-
stances from i = 1 to i = 30.

Performance in the IPC
Even though the setup of the AssemblyHierarchical is very
simple, all participating planners in the IPC 2020 struggled
with solving more than a few instances. The best planner
on this domain – Lilotane (Schreiber 2021b; 2021a) solved
only five out of the 30 total instances.

References
Bercher, P.; Biundo, S.; Geier, T.; Hörnle, T.; Nothdurft, F.;
Richter, F.; and Schattenberg, B. 2014. Plan, repair, exe-
cute, explain – How planning helps to assemble your home
theater. In Proc. of the 24th Int. Conf. on Autom. Plan. and
Sched. (ICAPS 2014), 386–394. AAAI Press.
Bercher, P.; Richter, F.; Hörnle, T.; Geier, T.; Höller, D.;
Behnke, G.; Nothdurft, F.; Honold, F.; Minker, W.; Weber,
M.; and Biundo, S. 2015. A planning-based assistance sys-
tem for setting up a home theater. In Proc. of the 29th AAAI
Conf. on AI (AAAI 2015), 4264–4265. AAAI Press.
Bercher, P.; Richter, F.; Hörnle, T.; Geier, T.; Höller, D.;
Behnke, G.; Nielsen, F.; Honold, F.; Schüssel, F.; Reuter, S.;
Minker, W.; Weber, M.; Dietmayer, K.; and Biundo, S. 2017.
Advanced User Assistance for Setting Up a Home Theater.
Cognitive Technologies. Springer. chapter 24, 485–491.
Bercher, P.; Richter, F.; Honold, F.; Nielsen, F.; Schüssel, F.;
Geier, T.; Hörnle, T.; Reuter, S.; Höller, D.; Behnke, G.; Di-
etmayer, K.; Minker, W.; Weber, M.; and Biundo, S. 2018.
A companion-system architecture for realizing individual-
ized and situation-adaptive user assistance. technical report,
Ulm University.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL – A language to
describe hierarchical planning problems. In Proc. of the 34th
AAAI Conf. on AI (AAAI 2020), 9883–9891. AAAI Press.
Schreiber, D. 2021a. Lifted logic for task networks: TO-
HTN planner lilotane in the IPC 2020. In Proceedings of
10th International Planning Competition: planner and do-
main abstracts (IPC 2020).
Schreiber, D. 2021b. Lilotane: A lifted SAT-based approach
to hierarchical planning. Journal of Artificial Intelligence
Research 70:1117–1181.

The 10th International Planning Competition – Planner and Domains Abstracts

20

From Classical to Hierarchical: benchmarks for the HTN Track of the
International Planning Competition

Damien Pellier, Humbert Fiorino
Univ. Grenoble Alpes - LIG
F-38000 Grenoble, France

{Damien.Pellier, Humbert.Fiorino}@imag.fr

Introduction
In this short paper, we outline nine classical benchmarks
submitted to the first hierarchical planning track of the Inter-
national Planning competition in 2020. All of these bench-
marks are based on the HDDL language (Höller et al. 2020).
The choice of the benchmarks was based on a question-
naire sent to the HTN community (Behnke et al. 2019).
They are the following: Barman, Childsnack, Rover, Satel-
lite, Blocksworld, Depots, Gripper, and Hiking. In the rest
of the paper we give a short description of these bench-
marks. All are totally ordered. A first hierarchical ver-
sion of the domains Barman, Childsnack, Rover, Satel-
lite, Blocksworld were proposed by (Ramoul et al. 2017;
Schreiber et al. 2019). All the domains presented here are
available online as part of the PDDL4J library (Pellier and
Fiorino 2018). The writing of the domains has been a collec-
tive work. We would like to thank all the other contributors,
D. Ramoul, D. Schreiber and A. Lequen.

Barman
In this domain, a barman robot manipulates drink dis-
pensers, shots and a shaker. The goal is to find a plan that
serves a targeted set of drinks. Action negative effects en-
code relevant knowledge given that robot hands can only
grasp one object at a time and given that glasses need to be
empty and clean to be filled. This domain was first proposed
by S. Jiménez for STRIPS during IPC 2014.

Our domain is composed of 12 actions, 5 methods and
5 tasks. The actions are the same as in the STRIPS IPC
domain. Each task has its own decomposition method. The
domain has 2 high-level tasks. The first one describes how
to serve a shot and the second one how to serve a cock-
tail. Serving a shot breaks down into 3 atomic sub-tasks:
(1) grasp a shot; (2) fill the shot and (3) leave the shot on
the table. Serving a cocktail is divided into 4 sub-tasks: (1)
grasp a container; (2) get the first ingredient of the cock-
tail; (3) get the second ingredient and (4) shake the cocktail.
The 3 last sub-tasks are not atomic. Getting an ingredient
consists in 3 atomic sub-tasks: (1) fill a shot, (2) pour the
shot to use a shaker and (3) clean the shot used. Finally, the
last task breaks down into 6 atomic sub-tasks: (1) grasp the
shaker; (2) shake the shaker; (3) pour the shaker into a shot ;
(4) empty the shaker and (5) clean the shaker and (6) finally

leave the shaker on the table. Note that this domain is not
recursive.

Childsnack
Childsnack domain is for planning how to make and serve
sandwiches for a group of children in which some are aller-
gic to gluten. There are two actions for making sandwiches
from their ingredients. The first one makes a sandwich and
the second one makes a sandwich taking into account that
all ingredients are gluten-free. There are also actions to put
a sandwich on a tray, to move a tray from one place to an-
other and to serve sandwiches. Problems in this domain de-
fine the ingredients to make sandwiches at the initial state.
Goals consist of having all kids served with a sandwich to
which they are not allergic. This domain was proposed by R.
Fuentetaja and T. de la Rosa for STRIPS during IPC 2014.

Our domain is composed of 6 actions, 2 methods and 1
task. The actions are the same as in the STRIPS IPC do-
main. The high level task of the domain consists in serving
sandwiches for a group of children. There is two methods
to do it. The first one for the children who are gluten in-
tolerant and the others. Serving a sandwich to an intolerant
(resp. tolerant) child breaks down 5 atomic sub-tasks: (1)
make a sandwich with no gluten (resp. with gluten); (2) put
the sandwich on the tray, (3) move the tray from the kitchen
to the child’s place; (4) serve the sandwich to the child and
finally (5) move back the tray to the kitchen. This domain is
not recursive.

Rover
Inspired by planetary rover problems, this domain requires
that a collection of rovers navigate a planet surface, finding
samples and communicating them back to a lander.

Our domain is composed of 11 actions, 13 methods and 9
tasks. The 3 high-level tasks of the domain consist in getting
soil and rock samples or images in a specific location. Get-
ting soil samples breaks down in 4 sub-tasks : (1) navigate to
the location to get the data; (2) empty the store of the rover;
(3) take a soil sample and (4) send the soil data to the lander.
The navigate task is a compound recursive task that consists
in exploring all the possible paths by remembering location
already explored. Finally, getting an image is a compound
tasks that is divided in several sub-tasks including a task of

The 10th International Planning Competition – Planner and Domains Abstracts

21

camera calibration, image capture and image transmission
to the lander.

Satellite
Inspired by space-applications, the original domain was a
first step towards the ”ambitious spacecraft” described by
David Smith at AIPS’00. It involves planning and schedul-
ing a collection of observation tasks between multiple satel-
lites, each equipped in slightly different ways.

Our domain is composed of 5 actions, 8 methods and 3
tasks. The actions are the same as in the STRIPS IPC do-
main. The domain has one high-level task that consists in
observing stars. This task can be divided in 3 sub-tasks: (1)
activate the instrument to carry out the observation ; (2) point
towards the star to observe and (3) take the image of the star.
Activating an instrument is a compound task. The activa-
tion procedure depends on the instrument to be activated and
sometimes requires an instrument-specific calibration step.
This domain does not have any recursive method.

Blocksworld
Probably the most known planning domain, in blocksworld
stackable blocks need to be re-assembled on a table with
unlimited space. A robot arm is used for stacking a block
onto another block, unstacking a block from another block,
putting down a block, or picking up a block from the ta-
ble. The initial state specifies a complete world state, and
the goal state only specifies the stacking relations required
between any two blocks.

Our domain is composed of 5 actions, 8 methods and 4
tasks. The actions are the same as in the STRIPS IPC do-
main. Just one ”nop” action has been added to indicate the
end of block stacking or unstacking. The high-level tasks of
the domain consist in specifying the desired stacking of the
blocks. Each stack requires either taking a block from the
table or from a stack of blocks. In the latter case, either the
block is at the top of the stack and the block can be taken di-
rectly, or it is necessary to recursively unstack all the blocks
that are stacked on top of it before taking it.

Depots
This domain was devised to see what would happen if two
previously well-known domains were joined together. These
were the logistics and blocks domains. They are combined to
form a domain in which trucks can transport crates around,
and then the crates must be stacked onto pallets at their
destinations. The stacking is achieved using hoists, so the
stacking problem is like a blocks-world problem. Trucks can
behave like ”tables” since the pallets on which crates are
stacked are unlimited.

Our domain is composed of 6 actions, 12 methods and 6
tasks. The actions are the same as in the STRIPS IPC do-
main. Just one ”nop” action has been added to indicate the
end of crate stacking or unstacking as in the blocksworld
domain. The domain has recursive methods. The high-level
method consists in defining the desired final position of the
crates. As in the blocksworld domain there are recursively

defined methods for stacking and unstacking, and methods
defining how to move a crate from one location to another.

Gripper
In this domain, there is a robot with two grippers. It can carry
a ball in each. The goal is to take N balls from one room to
another; N rises with problem number. Some planners treat
the two grippers asymmetrically, giving rise to an unneces-
sary combinatorial explosion. The first STRIPS version was
proposed by J. Koehler for IPC 1998.

Our domain is composed of 3 actions, 4 methods and 3
tasks. The actions are the same as in the STRIPS IPC do-
main. The high level tasks specify the desired location of
the balls. There are 2 methods to move a ball from one room
to another. Either the robot moves just one ball or it uses its
two arms to move two balls at the same time. This domain
has no recursive methods.

Hiking
Suppose you want to walk with your partner a long clock-
wise circular route over several days (e.g., in the Lake Dis-
trict in NW England), and you do one “leg” each day. You
want to start at a certain point and do the walk in one di-
rection, without ever walking backwards. You have two cars
that you must use to carry your tent/luggage and to carry
you and your partner to the start/end of a leg, if necessary.
Driving a car between any two points is allowed, but walk-
ing must be done with your partner and must start from the
place where you left off. As you will be tired when you have
walked to the end of a leg, you must have your tent up ready
there so you can sleep the night before you set off to do the
next leg in the morning.

Our hiking domain is composed of 8 actions, 15 methods
and 8 tasks. The higt-level task consists in making hiking ev-
eryone at a specific location. This tasks breaks down into 2
sub-tasks: (1) prepare the trip and (2) make the trip. Prepar-
ing the trip consists in (1) bringing the tent and (2) bring the
car. These two tasks are also broken down into sub-tasks de-
pending on the position of the tent or the car. Finally, making
the trip breaks down in several sub-tasks depending on the
means of transport used (on foot or by car). This domains
has no recursive methods.

Conclusion
This work is a first step towards the development of a set
of benchmarks for the evaluation of hierarchical planners.
There are still many STRIPS domains that can be transposed
for hierarchical planning. Some are very easy to transpose.
The methods are easy to write down. For other domains, on
the contrary, it is difficult to identify relevant methods. In our
opinion, the transposition effort must be continued in order
to better understand for which type of fields a hierarchical
representation is more appropriate.

References
[Behnke et al. 2019] Behnke, G.; Höller, D.; Bercher, P.; Bi-

undo, S.; Pellier, D.; Fiorino, H.; and Alford, R. 2019. Hi-

The 10th International Planning Competition – Planner and Domains Abstracts

22

erarchical planning in the IPC. In Proceedings of the Work-
shop on the International Planning Competition (ICAPS).

[Höller et al. 2020] Höller, D.; Behnke, G.; Bercher, P.; Bi-
undo, S.; Fiorino, H.; Pellier, D.; and Alford, R. 2020.
HDDL: an extension to PDDL for expressing hierarchical
planning problems. In The AAAI Conference on Artificial
Intelligence, 9883–9891. AAAI Press.

[Pellier and Fiorino 2018] Pellier, D., and Fiorino, H. 2018.
PDDL4J: a planning domain description library for Java. J.
Exp. Theor. Artif. Intell. 30(1):143–176.

[Ramoul et al. 2017] Ramoul, A.; Pellier, D.; Fiorino, H.;
and Pesty, S. 2017. Grounding of HTN planning domain.
Int. J. Artif. Intell. Tools 26(5):1760021:1–1760021:24.

[Schreiber et al. 2019] Schreiber, D.; Pellier, D.; Fiorino, H.;
and Balyo, T. 2019. Tree-rex: SAT-based tree exploration
for efficient and high-quality HTN planning. In Proceedings
of the Twenty-Ninth International Conference on Automated
Planning and Scheduling, ICAPS 2018, Berkeley, CA, USA,
July 11-15, 2019, 382–390.

The 10th International Planning Competition – Planner and Domains Abstracts

23

From PCP to HTN Planning Through CFGs

Daniel Höller1 and Songtuan Lin3 and Kutluhan Erol2 and Pascal Bercher3
1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

2 İzmir University of Economics, Turkey
3 The Australian National University, Australia

hoeller@cs.uni-saarland.de, kutluhan.erol@ieu.edu.tr, {songtuan.lin, pascal.bercher}@anu.edu.au

Abstract

The International Planning Competition in 2020 was the first
one for a long time to host tracks on HTN planning. The used
benchmark set included a domain describing the undecidable
Post Correspondence Problem (PCP). In this paper we de-
scribe the two-step process applied to generate HTN prob-
lems based on PCP instances. It translates the PCP into a
grammar intersection problem of two context-free languages,
which is then encoded into an HTN problem.

Introduction
Hierarchical Task Network (HTN) planning is a widely-
used planning approach with many practical applications
(Bercher, Alford, and Höller 2019). It provides two means of
modeling: a grammar-like decomposition structure as well
as actions with preconditions and effects. The hierarchy
makes it more expressive than e.g. classical planning, where
only the latter is available. Erol, Hendler, and Nau (1996)
showed that it enables the description of recursively enu-
merable, undecidable problems like the intersection problem
of context-free languages. The International Planning Com-
petition (IPC) in 2020 was the first for a long time to host
tracks on HTN planning. To include provable hard domains,
we included one describing the Post Correspondence Prob-
lem (PCP), which is one of the standard decisions problems
known to be undecidable (Hopcroft and Ullman 1979).

In this paper we give a short introduction of the applied
encoding. We first translate PCP into the language intersec-
tion problem of the context-free languages. For the language
intersection model, we can use the original encoding used to
prove hardness of the plan existence problem in HTN plan-
ning (Erol, Hendler, and Nau 1996).

Background
We first shortly introduce PCP (for further details see e.g.
(Hopcroft and Ullman 1979)). An instance of a PCP consists
of two finite lists of finite strings (over an alphabet A with at
least two symbols) with the same length: P 1 = s11, . . . , s

1
n

and P 2 = s21, . . . , s
2
n (n ∈ N). There is no restriction on

the length of the individual s1i and s2i . A solution is a finite
sequence of indices j1 . . . jk (k ∈ N) with 1 ≤ jr ≤ n for

each 1 ≤ r ≤ k such that the compound string s1j1 . . . s
1
jk

is
identical to s2j1 . . . s

2
jk

.
A context-free grammar is a tuple G = (Γ,Σ, P, S),

where Γ is a finite set of non-terminal symbols, Σ is a finite
set of terminal symbols, P is a finite set of production rules
mapping a single non-terminal symbol to a finite sequence
of terminal and non-terminal symbols. S is the start symbol.
With the language L(G) of a grammar we refer to the set of
words of that grammar, i.e., all terminal symbol sequences
that can be obtained by refining S via adhering the rules in
P . Erol, Hendler, and Nau (1994; 1996) were the first to rec-
ognize the close relationship to HTN models, which they ex-
ploited for HTN’s undecidability proof. Höller et al. (2014;
2016) have taken this further and studied the close rela-
tionship between various hierarchical (and non-hierarchical)
planning problems and the Chomsky Hierarchy.

From PCP to HTN Planning Problems
We first translate a given PCP instance into a grammar in-
tersection problem. For each list of strings, we construct a
grammar such that words derived from that grammar begin
with newly introduced letters representing the selected string
indices from the respective P i, followed by the actual con-
catenation of these strings. This is done for both P is, when
these languages have an intersection, this means that there
is a list of indices leading to the same overall string, which
solves our PCP problem.

For each P i from the PCP, we construct a CFG Gi =
({Si}, A ∪ L, P i, Si), where L = {l1 , . . . , ln}, n is the
length of the string list and the production rules P i are given
by two rules Si → ljS

isij and Si → lj s
i
j for each sij in the

list, where j is the string’s index, and lj a terminal symbol.
Now that we have constructed the grammars G1 and G2

for P 1 and P 2, we check whether they may both produce
the same string, relying on the encoding introduced by Erol,
Hendler, and Nau (1996). The resulting problems include
two tasks in the initial task network, which are not ordered
with respect to each other. Each of them can be decomposed
in sequences of actions representing the words of the lan-
guage of one of the grammars. Preconditions and effects of
the actions ensure that there is an applicable linearization if
and only if the actions derived from the two grammars are

The 10th International Planning Competition – Planner and Domains Abstracts

24

applied in turns, and some letter from the second grammar
follows the same letter from the first grammar. That way,
the HTN problem has a solution if and only if the languages
have a non-empty intersection.

We use the formalism by Geier and Bercher (2011). An
HTN problem is a tuple P = (F,Np, Nc,M, δ, tnI , sI , g).
F is a set of propositional state features, Np the set of prim-
itive tasks, Nc the set of abstract (also compound) tasks,
M the set of decomposition methods, δ a function mapping
primitive tasks to their precondition and effects, tnI the ini-
tial task network, sI the initial state, and g the state-based
goal condition.

Let G1 = ({S1}, Σ, P 1, S1) and G2 = ({S2}, Σ,
P 2, S2) be the two grammars constructed in the previ-
ous step. The set of state features is defined as F = Σ ∪
{turn1 , turn2}, the primitive tasks as Np = {pia | a ∈
Σ, i ∈ {1, 2}}. δ is defined as follows: if i = 1
then δ(pia) = ({turn1}, {a, turn2}, {turn1}), otherwise,
δ(pia) = ({turn2 , a}, {turn1}, {turn2 , a}). The domain
contains two compound tasks Nc = {S1, S2}. The set of
methods M which decompose those two compound tasks is
constructed according to the set of production rules P 1∪P 2.
Let p ∈ P 1∪P 2 be an arbitrary production rule. If p is in the
form Si → lSis where i ∈ {1, 2}, l ∈ L, and s = c1 . . . ck
is a string with k ∈ N and cj ∈ A for 1 ≤ j ≤ k, we
construct a method m = (Si, (T,≺, α)) where

T = {tS , tl, t1, . . . , tk}
≺ = {(tl, tS), (tS , t1), . . . , (tk−1, tk)}
α = {(tS , Si), (tl, p

i
l), (t1, p

i
c1), . . . , (tk, p

i
ck

)}
For production rule not containing Si, a similar method

is constructed not including Si. Initial task network, initial
state, and state-based goal condition are defined as follows:

tnI = ({s1, s2}, ∅, {(s1, S1), (s2, S2)})
sI = {turn1} g = {turn1}

Example
Fig. 1 shows the definitions of the tasks t1G1 and t1G2,
which are two actions that can be executed after each other,
since one corresponds to the “creation” of the symbol l1 by
the first grammar, whereas the other, by the second grammar,
deletes that symbol. The example code is provided in HDDL
(Höller et al. 2020). The used predicate names in our figure
differ only slightly from the respective names in the actual
problem files (we adapted it slightly to match our formal
definitions from before).

Benchmark Collection
For the IPC we selected problem instances where a solution
exists, and we varied degree of difficulty as measured by the
solution length. Meanwhile we also support the automatic
generation of problem instances based on an external PCP
problem generator. That generator creates random PCP in-
stances given a minimal solution length, which is obtained
by solving the respective problem. The random generator is
available in the IPC benchmark repository next to the in-
stances used in the IPC.

(:action t1G1
:parameters ()
:precondition
(and

(turn1)
)

:effect
(and

(not (turn1))
(turn2)
(l1)))

(:action t1G2
:parameters ()
:precondition
(and

(turn2)
(l1))

:effect
(and

(not (turn2))
(turn1)
(not (l1))))

Figure 1: Examples of primitive tasks.

References
Bercher, P.; Alford, R.; and Höller, D. 2019. A survey on hi-
erarchical planning – One abstract idea, many concrete real-
izations. In Proceedings of the 28th International Joint Con-
ference on Artificial Intelligence (IJCAI), 6267–6275. IJCAI
Organization.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. Semantics for
hierarchical task-network planning. Technical Report CS-
TR-3239, UMIACS-TR-94-31, ISR-TR-95-9, Inst. for Ad-
vanced Computer Studies, Inst. for Systems Research, Com-
puter Science Department, University of Maryland.
Erol, K.; Hendler, J.; and Nau, D. S. 1996. Complexity
results for HTN planning. Annals of Mathematics and Arti-
ficial Intelligence (AIMA) 18(1):69–93.
Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJ-
CAI), 1955–1961. AAAI Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language classification of hierarchical planning problems.
In Proceedings of the 21st European Conference on Artifi-
cial Intelligence (ECAI), 447–452. IOS Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2016.
Assessing the expressivity of planning formalisms through
the comparison to formal languages. In Proceedings of the
26th International Conference on Automated Planning and
Scheduling (ICAPS), 158–165. AAAI Press.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An extension to
PDDL for expressing hierarchical planning problems. In
Proceedings of the 34th AAAI Conference on Artificial In-
telligence (AAAI), 9883–9891. AAAI Press.
Hopcroft, J. E., and Ullman, J. D. 1979. Introduction to
Automata Theory, Languages, and Computation. Addison-
Wesley.

The 10th International Planning Competition – Planner and Domains Abstracts

25

Hierarchical Task Networks Generated Using Invariant Graphs for IPC2020

Damir Lotinac, Filippos Kominis, Anders Jonsson1

1 Universitat Pompeu Fabra, Roc Boronat 138, 08018 Barcelona, Spain.

Abstract

This paper describes HTN domains generated using PDDL
description of a planning domain and a single representative
instance. We also describe the algorithm used to generate the
HTN domains. Two types of composite tasks that interact to
achieve the goal of a planning instance are generated. One
type of task achieves fluents by traversing invariants in which
only one fluent can be true at a time. The other type of task
applies a single action, which first involves ensuring that the
precondition of the action holds. Finally we discuss differ-
ences between JSHOP2 and domains generated for IPC2020
in HDDL.

Introduction
Hierarchical Task Networks models enable defining com-
pound parameterized tasks which can reduce the search
complexity if the adequate constraints can be identified dur-
ing the modeling. The hierarchical structure enables the
modeler to encode domain-specific knowledge. The expres-
siveness of HTNs can help to impose the constraints, which
can in turn lead to a reduction in the search complexity. The
hierarchy ideally imposes some constraints on how tasks can
be decomposed. The more constrained the task network, the
less search has to be performed in order to achieve a certain
task.

HTN models are more expressive than STRIPS (Erol,
Hendler, and Nau 1994), which along with the ability to
construct parametric compound tasks allows for capturing
domain-specific knowledge.

In this paper we describe the HTN domains and instances
which were submitted to IPC2020 1 and the algorithm which
was used to generate them. We used PDDL instances from
IPC-2000 and IPC-2002 as input.

To generate the HTN domains we use HTNPrec algo-
rithm. The algorithm takes as input the PDDL description of
a planning domain and a single representative instance. The
approach is to generate HTNs that encode invariant graphs
of planning domains. An invariant graph is similar to a lifted
domain transition graph, but can be subdivided on types. To

1The domains and the code are available at:
https://github.com/dloti/pddl-to-htn

traverse an invariant graph we define two types of tasks: one
that reaches a certain node of an invariant graph, achieving
the associated fluent, and one that traverses a single edge
of an invariant graph, applying the associated action. These
two types of tasks are interleaved, in that the expansion of
one type of task involves tasks of the other type.

We also describe differences between HTN domains gen-
erated by HTNPrec, HTNGoal and domains generated for
the IPC2020. While HTNPrec and HTNGoal (Lotinac and
Jonsson 2016) use a JSHOP2 (Nau et al. 2003) representa-
tion, for the IPC the domains are given in the HDDL format
(Höller et al. 2020). Further some of the optimizations are
not included in the IPC version. The HTN instances gener-
ated using JSHOP2 are solved with blind search, thus those
HTN domains are meant to guide the search through the un-
derlying invariant graph structures. In contrast HDDL do-
mains are generated with minimal additions to the original
PDDL domain.

Hierarchical Task Networks
Our HTN definition is inspired by Geier and Bercher (2011).
However, just as for STRIPS planning, we separate the def-
inition into a domain part and an instance part. We also im-
pose additional restrictions: a task network can contain at
most one copy of each task, and task decomposition is lim-
ited to progression, always decomposing tasks with no pre-
decessor.

An HTN domain is a tuple h = 〈P, A, C, M〉 consisting
of four sets of untyped function symbols. Specifically, P is
the set of predicates, A is the set of actions (i.e. primitive
tasks), C is the set of compound tasks and M is the set of
decomposition methods. Predicates and actions are defined
as for STRIPS domains but, unlike STRIPS domains, HTN
domains are untyped and we allow negative preconditions.

Each method m ∈ M has an associated tuple
〈c, tnm, pre(m)〉 where c ∈ C is a compound task with
the same arity as m, tnm is a task network and pre(m) is
a set of preconditions, defined as for actions. The task net-
work tnm = (T, ≺) consists of a set T of pairs (t, ϕ), where
t ∈ A ∪ C is a task and ϕ is an argument map from m to t,
and a partial order ≺ on the tasks in T .

Given an HTN domain h, an HTN instance is a tuple

The 10th International Planning Competition – Planner and Domains Abstracts

26

s = 〈Ω, init, tnI〉, where Ω is a set of objects and init
is an initial state. The instance s induces sets PΩ and AΩ

of fluents and grounded actions, and sets CΩ and MΩ of
grounded compound tasks and grounded methods, respec-
tively. A grounded method m[x] ∈ MΩ has associated tuple
〈c[x], tnm[x], pre(m[x])〉, where c[x] is a grounded com-
pound task and the precondition pre(m[x]) is derived as
for grounded actions. The grounded task network tnm[x] =
(Tx, ≺) is defined by Tx = {t[ϕ(x)] : (t, ϕ) ∈ T}. The ini-
tial grounded task network tnI = ({tI}, ∅) contains a single
grounded compound task tI ∈ CΩ.

An HTN state (s, tn) consists of a state s ⊆ PΩ on flu-
ents and a grounded task network tn. We use (s, tn) →D

(s′, tn′) to denote that an HTN state decomposes into an-
other HTN state, where tn = 〈Tx, ≺〉 and tn′ = 〈Ty, ≺′〉.
A valid progression decomposition consists in choosing a
grounded task t ∈ Tx such that t′ 6≺ t for each t′ ∈ Tx, and
applying one of the following rules:

1. If t is primitive, the decomposition is applicable if
pre(t) ⊆ s, and the resulting HTN state is given by s′ =
s ⋉ t, Ty = Tx \ {t} and ≺′= {(t1, t2) ∈≺| t1, t2 ∈ Ty}.

2. If t is compound, a grounded method m =
〈t, tn, pre(m)〉 with tn = (Tm, ≺m) is applicable
if pre(m) ⊆ s, and the resulting HTN state is given by
s′ = s, Ty = Tx \ {t} ∪ Tm and

≺′ = {(t1, t2) ∈ ≺ | t1, t2 ∈ Ty}
∪ {(t′, t1) ∈ Tm × Ty | (t, t1) ∈ ≺} ∪ ≺m .

The first rule removes a grounded primitive task t from
tn and applies the effects of t to the current state, while
the second rule uses a grounded method m to replace a
grounded compound task t with tnm while leaving the
state unchanged. If there is a finite sequence of decompo-
sitions from (s1, tn1) to (sn, tnn) we write (s1, tn1) →∗

D
(sn, tnn). An HTN instance s is solvable if and only if
(init, tnI) →∗

D (sn, 〈∅, ∅〉) for some state sn, i.e. the initial
HTN state (init, tnI) is decomposed into an empty task net-
work. Let π be the sequence of grounded actions extracted
during such a decomposition; π corresponds to a plan that
results from solving s.

Invariants
In STRIPS planning, an exactly-1 invariant is a subset of flu-
ents F ′ ⊆ PΩ such that exactly one fluent in F ′ is true at
any moment. Formally, |F ′ ∩ init| = 1 and any grounded
action a ∈ AΩ that adds a fluent in F ′ deletes another. The
Fast Downward planning system (Helmert 2009) uses the
domain description of a STRIPS domain to detect lifted in-
variant candidates. Unlike Fast Downward, which grounds
lifted invariants on actual instances, our algorithm operates
directly on the lifted invariants.

In LOGISTICS, Fast Downward finds a single lifted in-
variant candidate {(in ?o ?v), (at ?o ?p)}, i.e. a set of
predicates with associated arguments. In the given invariant,
variable ?o is bound while variables ?v and ?p are free. To
ground the lifted invariant on an instance p, we should cre-
ate one mutex invariant F ′ for each assignment of objects to

the bound variables, obtaining each fluent in F ′ by assigning
objects to the free variables. In our running example, assign-
ing the package p1 to ?o results in the following grounded
mutex invariant:
{(at p1 ap1),(at p1 ap2),(at p1 l1),(at p1 l2),
(in p1 t1),(in p1 t2),(in p1 a1)}.

The meaning of the invariant is that across all LOGISTICS
instances, a given object ?o is either in a vehicle or at a lo-
cation.

If a predicate p ∈ P is not part of any in-
variant but there are actions that add and/or
delete p, we create a new lifted invariant
{(p ?o1 · · · ?ok),(¬p ?o1 · · · ?ok))}. In this in-
variant, all variables ?o1, . . . , ?ok are bound and an
associated fluent can either be true or false.

Given a lifted invariant, our algorithm generates one or
several invariant graphs. We do so by iterating over the
actions of the domain and identifying which actions add
and delete predicates in the same lifted invariant. When
grounded, such actions have the effect of changing the fluent
of an exactly-1 invariant that is currently true. An invariant
graph is a representation of a lifted invariant in which the
nodes are the predicates of the invariant and the edges are
the actions used to change the predicate that is currently true.
We use invariant graphs to infer which actions to perform in
order to achieve a particular fluent of an exactly-1 invariant.

The reason why a given lifted invariant can generate mul-
tiple invariant graphs is that the type of the bound objects
may be different for different actions. For example, in the
LOGISTICS domain, all actions affect the lone invariant
above. However, in the actions for loading or unloading a
package, the bound object ?o is a package, in the action for
driving a truck ?o is a truck, and in the action for flying an
airplane ?o is an airplane. Moreover, we can either load a
package into a truck or an airplane. We use the actions to
differentiate between types, possibly generating multiple in-
variant graphs for each lifted invariant.

To generate the invariant graphs induced by lifted invari-
ants we go through each action, find each transition of each
invariant that it induces (by pairing add and delete effects
and testing whether the bound objects are identical), and
map the types of the predicates to the invariant. We then
either create a new invariant graph for the bound types or
add nodes to an existing graph corresponding to the mapped
predicate arguments.

Figure 1 shows the invariant graphs that we generate in
LOGISTICS. In the top graph (G1), the bound object is a
package ?p, in the middle graph (G2) it is a truck ?t, and
in the bottom graph (G3) it is an airplane ?a. Note that the
predicate in is not actually part of the two bottom graphs,
since trucks and planes cannot be inside other vehicles. Nev-
ertheless, the invariant still applies: a truck or plane can only
be at a single place at once.

Each edge of an invariant graph corresponds to an action
that deletes one predicate of the invariant and adds another.
To do so, the arguments of the action have to include the
arguments of both predicates, including the bound objects.
In the figure, the invariant notation is extended to actions on

The 10th International Planning Competition – Planner and Domains Abstracts

27

G1

G2

G3

(in ?p ?t) (at ?p ?l) (in ?p ?a)

(unloadtruck ?p ?t ?l) (loadplane ?p ?a ?ap)

(unloadplane ?p ?a ?ap)(loadtruck ?p ?t ?l)

(at ?t ?l)
(drivetruck ?t ?l1 ?l2 ?c)

(at ?a ?ap)
(flyplane ?a ?ap1 ?ap2)

Figure 1: Invariant graphs G1, G2 and G3 in LOGISTICS.

edges such that each argument of an action is either bound
or free.

Even if actions preserve the invariant property, the initial
state of a planning instance may violate the condition |F ′ ∩
init| = 1, in which case F ′ is not an exactly-1 invariant. To
verify that a lifted invariant candidate corresponds to actual
exactly-1 invariants, our algorithm needs access to the initial
state of an example planning instance p of the domain. If this
verification fails, the lifted invariant is not considered by the
algorithm.

Generating HTNs
In this section we describe the algorithm for generating the
HTN domains. The idea is to construct a hierarchy of tasks
that traverse the invariant graphs to achieve certain fluents.
In doing so there are two types of interleaved tasks: one that
achieves a fluent in a given invariant (which involves apply-
ing a series of actions to traverse the edges of the graph), and
one that applies the action on a given edge (which involves
achieving the preconditions of the action).

A planning domain is a tuple d = 〈T , <, P, A〉, where
T = {τ1, . . . , τn} is a set of types, < is an inheritance re-
lation on types, P is a set of typed function symbols called
predicates, and A is a set of typed function symbols called
actions. Each action a ∈ A has a set of preconditions pre(a),
a set of add effects add(a) and a set of delete effects del(a).
Each element in these three sets is a pair (p, ϕ) consisting of
a predicate p ∈ P and an argument map ϕ from a to p.

Given d, a planning instance is a tuple p = 〈Ω, init, goal〉,
where Ω = Ω1 ∪ . . . ∪ Ωn is a set of objects of each type.

Formally, our algorithm takes as input a STRIPS plan-
ning domain d = 〈T , <, P, A〉 and a planning instance
p = 〈Ω, init, goal〉 and outputs an HTN domain h =
〈P, A′, C, M〉. The HTN domain h can then be used to solve
any other instance of the domain. Specifically, for each in-
stance p′ of the planning domain d, we construct an HTN
instance s. Solving the HTN induced by d and s returns a
plan that can be adapted to solve p′.

The input planning instance p is used for three purposes:

1. To verify that an invariant candidate is actually an invari-
ant by testing the condition |F ′ ∩ init| = 1.

2. To extract a subset of predicates PG ⊆ P that are part of
the goal.

3. To perform goal ordering as described in a subsequent
section.

The algorithm first constructs the invariant graphs
G1, . . . , Gk described above. In what follows we de-
scribe the components of the HTN domain h.

The set A′ contains the following actions:

• Each action a ∈ A. For each element βk(a) ∈ T of
the type list of a, we add an additional precondition
(βk(a), ϕk). where the argument map ϕk maps the argu-
ment xk of a to the lone argument of the type predicate
βk(a), ensuring that argument xk has the correct type.

Note that only actions in A add or delete predicates in the
original set P . The set C contains three types of compound
tasks:

• For each predicate p ∈ P , a task achieve-p with arity
α(p).

• For each invariant graph Gi and each p ∈ P that is posi-
tive in Gi, a task achieve-p-i with arity α(p).

• For each invariant graph Gi, each predicate p in Gi, and
each outgoing edge of p (corresponding to an action a ∈
A), a task do-p-a-i with arity α(a).

The task achieve-p is a wrapper task that uses a task
achieve-p-i to achieve p by traversing the edges of the in-
variant graph Gi. To traverse each edge of Gi, achieve-p-i
has to use a task of type do-p-a-i, which in turn uses tasks
of type achieve-p′ to achieve the preconditions of a.

Methods
The set M contains the following decomposition methods.
For simplicity, we use x to denote an argument list, and de-
fine argument maps inline which are described in the text.
We describe methods in pseudo-SHOP2 syntax in the fol-
lowing format:
(:method (〈name〉[〈arguments〉])
(〈precondition〉)
(〈tasklist〉))
For each method in the first line we specify a name and
arguments, in the second line we give a precondition list,
and finally in the third we specify the respective task list to
which method decomposes. For clarity, we add an exclama-
tion mark in front of primitive tasks.

• Methods for achieve-p

The first type of compound task, achieve-p, has one as-
sociated method for each invariant graph Gi in which p
appears. This method is defined as follows:

(: method (achieve-p[x])
(¬p[x])
(achieve-p-i[x])).

Intuitively this method delegates achieving p to the task
achieve-p-i for some invariant graph Gi. The precondition
¬p[x] ensures that p is not currently true.

The 10th International Planning Competition – Planner and Domains Abstracts

28

In addition, there is one method with empty task list which
is applicable when p already holds:

(: method (achieve-p[x])
(p[x])
()).

• Methods for achieve-p-i

The second type of compound task, achieve-p-i, has one
associated method for each predicate q in the invariant
graph Gi and outgoing edge of q (corresponding to an
operator o):

(: method (achieve-p-i[x])
(¬p[x], q[ϕq(x)])
(do-q-o-i[ϕo(x)], achieve-p-i[x])).

Operator o appears on an outgoing edge from q, i.e. o
deletes q. Intuitively, one way to achieve p in Gi, given
that we are currently at some different node q, is to tra-
verse the edge associated with o using the compound task
do-q-o-i. After traversing the edge we recursively achieve
p from the resulting node. The argument map ϕo should
map the bound objects of p to o while leaving the remain-
ing arguments of o as free variables. The argument map
ϕq maps the bound objects of p to q, and shares all free
variables with ϕo (since q is a delete effect of o).
We also define a decomposition method for achieve-p-i
which is applicable when p already holds and has empty
task list:

(: method (achieve-p-i[x])
(p[x])
())

• Method for do-p-o-i

The third type of compound task, do-p-o-i, has a single
associated method. The aim is to apply operator o to tra-
verse an outgoing edge of p in the invariant graph Gi.
To do so, the task list has to ensure that all preconditions
p1, . . . , pk of o hold (excluding p, which has to hold to
apply the method, as well as any static preconditions of
o). We define the method as

(: method (do-p-o-i[x])
(p[ϕp(x)])
(achieve-p1[ϕ1(x)], . . . , achieve-pk[ϕk(x)], !o[x]))

Here, the argument map ϕj , 1 ≤ j ≤ k, maps the ar-
guments of operator o to the precondition pj of o. This
mapping is given directly by the definition of operator o.
Note that the decomposition achieves all preconditions of
o except p, then applies o.
When p is the only precondition of operator o, task
do-p-o-i[x] is not needed since operator o is always
applicable as long as p holds. In this case, whenever
do-p-o-i[x] appears in a decomposition method of a task
achieve-q-j, we replace do-p-o-i[x] directly with the op-
erator !o[x].

Planning Instances
Once we have generated the HTN domain h we can ap-
ply it to any instance of the domain. Given a STRIPS in-

stance p = 〈Ω, init, goal〉, we construct an HTN instance
s = 〈Ω, init′, 〈achieve-p1[x1], . . . , achieve-pk[xk]〉〉, given
goal = {p1[x1], ..., pk[xk]}, as follows. The set of objects
Ω = Ω1 ∪ · · · ∪ Ωn is identical to that of p. The initial
state init′ is defined as init′ = init ∪ {τj [ω] : τj ∈ T ,
ω ∈ Ωj} ∪ {goal-p[x] : p[x] ∈ goal}. We thus mark the
type τj of each object ω using the fluent τj [ω], and we mark
all fluents p[x] in the goal state using the fluent goal-p[x].
The initial task network contains the achieve tasks which
correspond to each fluent p[x] in the goal state. The order-
ing of achieve tasks is imposed based on the order of goal
fluents in the given PDDL instance.

Optimizations
Achieving the preconditions of an action a in any order is
inefficient since an algorithm solving the HTN instance may
have to backtrack repeatedly. For this reason, we include the
HTNPrec algorithm that uses a simple inference technique
to compute a partial order in which to achieve the precon-
ditions of a. We define a set of predicates whose value is
supposed to persist, and check whether a path through an
invariant graph is applicable given these persisting predi-
cates. While doing so, only the values of bound variables
are known, while free variables can take on any value. We
match the bound variables of predicates and actions to de-
termine whether an action allows a predicate to persist.

Discussion
There are several differences between the HDDL domains
and instances and JSHOP2 version generated by HTNPrec
and HTNGoal. The HDDL version is closest to HTNPrec,
since it does not apply goal order optimization. However,
there are several differences to the HTNPrec algorithm as
well. In this section we give tasks, methods and predicates
which are not generated by the IPC2020 version of the algo-
rithm.

Predicates which are not generated:
• visited-p, indicating that p has already been visited dur-

ing search.
• achieving-p, indicating that p or another predicate in the

same invariant are already being achieved.
• goal-p, indicating that a fluent derived from p is a goal

state.
Actions which are not generated:

• occupy-i, which marks each predicate in the invariant
graph Gi as being achieved.

• clear-i, which deletes visited-p and achieving-p for
each predicate p of the invariant graph Gi.

• test-p with arity 0 and no effects, whose precondition
tests if all goal fluents derived from p hold.

The only task left out is solve whose decomposition
achieves the goal condition JSHOP2 version. In HDDL the
algorithm simply creates the task list by adding the achieve
tasks in the order of appearance in the PDDL instance. This
is under the assumption that the original instance can be
solved under such restriction.

The 10th International Planning Competition – Planner and Domains Abstracts

29

The predicates and actions mentioned above are used to
guide the search over the HTN decompositions. As such
these predicates are added having blind search in mind and
while they should not hinder the perofmance of a heuristic
planner, they can also be left out. HTNPrec and HTNGoal
also have a different structure given that the resulting HTN
consists of only one task to decompose. In contrast, for the
IPC2020 we generated instances with task list consisting of
achieve tasks.

References
Erol, K.; Hendler, J.; and Nau, D. 1994. HTN planning:
Complexity and expressivity. In Proceedings of the 12th
National Conference on Artificial Intelligence (AAAI’94),
1123–1128.
Geier, T., and Bercher, P. 2011. On the Decidability of HTN
Planning with Task Insertion. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJ-
CAI’11), 1955–1961.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173:503–
535.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. Hddl: An extension to
pddl for expressing hierarchical planning problems. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 34, 9883–9891.
Lotinac, D., and Jonsson, A. 2016. Constructing hierarchi-
cal task models using invariance analysis. In Proceedings of
the Twenty-second European Conference on Artificial Intel-
ligence, 1274–1282.
Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, W.; Wu,
D.; and Yaman, F. 2003. SHOP2: An HTN Planning System.
Journal of Artificial Intelligence Research 20:379–404.

The 10th International Planning Competition – Planner and Domains Abstracts

30

HTN IPC-2020 Domains: Blocksworld-HPDDL and Multiarm-Blocksworld

Ron Alford
The MITRE Corporation

ralford@mitre.org

Abstract

The Blocksworld-HDDL problems from the 2020 HTN Inter-
national Planning Competition were adapted from the HTN
translation papers by Alford et al.. The domain enforces a
strategy of only picking up blocks to move, and placing them
either in their final location or on the table. The Multiarm-
Blocksworld domain extends the domain by allowing for
multiple independent arms.

The Blocksworld-HPDDL domain was introduced by the
2009 translation of totally-ordered HTN problems to PDDL
(Alford, Kuter, and Nau 2009). Blocksworld-HPDDL was
supplemented by the Multiarm-Blocksworld domain in fur-
ther work translating partially-ordered HTNs to PDDL (Al-
ford et al. 2016). These domains were designed to test the
effectiveness heuristic search when using control knowl-
edge to eliminate the Sussman Anomaly from the standard
Blocksworld’s search space.

The IPC problem files are generated with the uniform
Blocksworld state generator by Slaney and Thiébaux (2001),
and converted to the HDDL problem format. Each of the
problem initial states is supplemented with predicates de-
scribing the goal (e.g., (goal on a b) if (on a b) is
part of the goal state). The HTN IPC contained 30 problems
from this domain with a block count ranging from five to
1,000.

The domain has a top level task (achieve-goals).
At a high level, it loops through blocks which aren’t marked
as done (i.e., for a block b, (done b) is part of the state).
For each block b where (done b) is not part of the state:
• If b is on the table and has a goal of being on the table,
(done b) is added to the state.

• If b is on a block c, (on b c) is part of the goal state,
and c is marked as done, then mark b as done.

• If b is clear, on another block, and its goal location is clear
(or on the table), then pick up the block, place it in its goal
location, and mark it done.

The author’s affiliation with The MITRE Corporation is
provided for identification purposes only, and is not intended
to convey or imply MITRE’s concurrence with, or support
for, thepositions, opinions, or viewpoints expressed by the
author. ©2021 The MITRE Corporation. CC BY-NC-ND

• If b is clear and its goal location is not, pick up the block
and set it on the table.

Preconditions to the four achieve-goals methods pre-
vent them from selecting a block which isn’t ready for
any of the four methods. For any solution to the original
Blocksworld domain, this method structure permits a so-
lution with the same or fewer total pickup, putdown,
stack, and unstack actions by eliminating unnecessary
moves and replacing some stacks with table placements.

In structure, the achieve-goals task is tail-recursive
with a max progression bound of 4, strictly limiting the
size of task networks that HTN-progression oriented plan-
ners will encounter during search (Alford, Bercher, and Aha
2015). There are 12 methods and 6 operators, four of which
are the original actions of Blocksworld, and two of which
are bookkeeping operators.

The Multiarm-Blocksworld extends the original
Blocksworld domain by adding independent arms to
the environment. The HTN method structure is the same. To
add the arms, each of the methods and placement operators
is given an additional arm parameter, and the initial task
network contains an achieve-goal task for each arm.
In the HTN IPC, this domain was used in the total order
track, where the achieve-goals tasks were serially
ordered. This meant that the IPC Multiarm-Blocksworld
problems have the same effective solution space as the
Blocksworld-HPDDL domains.

References
[Alford, Bercher, and Aha 2015] Alford, R.; Bercher, P.; and

Aha, D. 2015. Tight bounds for HTN planning. In ICAPS.
[Alford et al. 2016] Alford, R.; Behnke, G.; Höller, D.;

Bercher, P.; Biundo, S.; and Aha, D. 2016. Bound to plan:
Exploiting classical heuristics via automatic translations of
tail-recursive HTN problems. In ICAPS.

[Alford, Kuter, and Nau 2009] Alford, R.; Kuter, U.; and
Nau, D. S. 2009. Translating HTNs to PDDL: A small
amount of domain knowledge can go a long way. In IJCAI.

[Slaney and Thiébaux 2001] Slaney, J., and Thiébaux, S.
2001. Blocks world revisited. Artificial Intelligence 125(1-
2):119–153.

The 10th International Planning Competition – Planner and Domains Abstracts

31

HTN IPC-2020 Domain: Robot

Ron Alford
The MITRE Corporation

ralford@mitre.org

Abstract

The Robot problems from the 2020 HTN International Plan-
ning Competition were adapted from the HTN translation pa-
pers by Alford et al.. The domain encodes an office delivery
problem, and enforces a strategy of only picking up packages
that are not in their goal location, and only placing packages
in their final location. Package order and navigation are left
up to the choices of the planner.

The Robot domain, modeled after the Robot Navigation
domain (Kabanza, Barbeau, and St-Denis 1997), was used to
evaluate the translation of totally-ordered HTN problems to
PDDL (Alford, Kuter, and Nau 2009) and updated in further
work translating partially-ordered HTNs to PDDL (Alford
et al. 2016). This domain was originally designed to show-
case the effectiveness of partial HTN knowledge in guiding
planner search. The domains in the above papers encoded a
method for picking up objects in their initial locations and
placing them in their goal location. Navigation actions were
allowed to be inserted by the planner outside of the HTN
structure, similar to HTN task insertion planning (Geier and
Bercher).

In the IPC, the additional methods were introduce to place
the navigation actions in the hierarchy, giving the domain
traditional HTN semantics. The new domain contains 4 op-
erators and 11 methods implementing 6 abstract tasks. The
problems are tail recursive with a max progression bound
of 2, which means any HTN progression of the initial task
network results in a task network with at most two tasks (Al-
ford, Bercher, and Aha 2015).

The top level task, achieve-goals, has four methods:
• achieve-goals-move, achieve-goals-open:

These change rooms and open door, respectively, and then
recurse back to achieve-goals

• achieve-goals-pickup has a precondition that
there is an object in the current room and its not in its
goal location. Its subtasks pick up the object, and recurse

The author’s affiliation with The MITRE Corporation is
provided for identification purposes only, and is not intended
to convey or imply MITRE’s concurrence with, or support
for, thepositions, opinions, or viewpoints expressed by the
author. ©2021 The MITRE Corporation. CC BY-NC-ND

to the release task.
• finished has no precondition or subtasks.
The release task has three methods:
• release-open and release-move which call the

open and move operators respectively, then recurse back
to release.

• release-putdown abstract has a precondition
that the robot is holding a package while in the package’s
goal location. It has subtasks to release the package and
recurse back to the top level task achieve-goals.
The problem generator1 for the Robot domain takes the

number of packages and rooms as a parameter. It generates
a problem with the rooms connected in a random acyclic
graph, the packages uniformly distributed among the rooms,
and the doors closed or open with even chance. The problem
generator outputs in PDDL format, which had to be hand
adapted for the HDDL format of the HTN IPC (Höller et
al. 2020). The IPC contained 30 problems with room counts
between 1 and 300, and package counts between 1 and 150.

References
[Alford, Bercher, and Aha 2015] Alford, R.; Bercher, P.; and

Aha, D. 2015. Tight bounds for HTN planning. In ICAPS.
[Alford et al. 2016] Alford, R.; Behnke, G.; Höller, D.;

Bercher, P.; Biundo, S.; and Aha, D. 2016. Bound to plan:
Exploiting classical heuristics via automatic translations of
tail-recursive HTN problems. In ICAPS.

[Alford, Kuter, and Nau 2009] Alford, R.; Kuter, U.; and
Nau, D. S. 2009. Translating HTNs to PDDL: A small
amount of domain knowledge can go a long way. In IJCAI.

[Geier and Bercher] Geier, T., and Bercher, P. On the decid-
ability of HTN planning with task insertion. In IJCAI.

[Höller et al. 2020] Höller, D.; Behnke, G.; Bercher, P.; Bi-
undo, S.; Fiorino, H.; Pellier, D.; and Alford, R. 2020.
HDDL: An extension to PDDL for expressing hierarchical
planning problems. In AAAI.

[Kabanza, Barbeau, and St-Denis 1997] Kabanza, F.; Bar-
beau, M.; and St-Denis, R. 1997. Planning control rules
for reactive agents. Artificial Intelligence 95(1):67–113.

1https://github.com/ronwalf/HTN-Translation/tree/master/
examples/robot

The 10th International Planning Competition – Planner and Domains Abstracts

32

HTN IPC-2020 Domains: Towers

Ron Alford
The MITRE Corporation

ralford@mitre.org

Abstract

The Towers domain from the 2020 HTN International Plan-
ning Competition was adapted from the HTN translation pa-
pers by Alford et al.. The domain encodes a solution to the
Towers of Hanoi problem, admitting a unique, optimal solu-
tion and having no branches in the search space.

Towers of Hanoi is a puzzle consisting of a set of rings of
decreasing size and three pegs. The rings are initially stacked
in size-order on one ring, with the smallest at the top. The
goal of the puzzle is to move the rings one at a time between
the pegs such that the entire tower ends up on the goal peg
without ever placing a larger ring on top of a smaller.

Optimal solutions for Towers of Hanoi problems have
2|rings|−1 moves. The Towers domain, introduced in works
translating HTNs to PDDL (Alford, Kuter, and Nau 2009;
Alford et al. 2016), encodes a tail-recursive, optimal solution
without any branching in the forward search space. The so-
lution moves the smallest disk in a rotating pattern between
the ring. After each move of the smallest ring, it moves the
smallest of the other two exposed rings to the larger. There
is an initial phase of the methods which determines whether
there are an odd or even number of rings, which determines
which tower the smallest ring goes to first.

The Towers domain has one operator, five compound
tasks, and eight methods implementing those tasks. Any
HTN progression of the initial task network of a Towers
problem has at most two tasks, giving it a progression bound
of 2 (Alford, Bercher, and Aha 2015). The outline of the
tasks and methods are as follows:
• The top level task is (shiftTower t1 t2 t3),

which shifts the tower from t1 to t2 using t3.
The m-shiftTower method has a single subtask,
selectDirection.

• The selectDirection task has two methods,
m-selectDirectionwhich flips its planned order for

The author’s affiliation with The MITRE Corporation is
provided for identification purposes only, and is not intended
to convey or imply MITRE’s concurrence with, or support
for, thepositions, opinions, or viewpoints expressed by the
author. ©2021 The MITRE Corporation. CC BY-NC-ND.

shifting the tower, and selectedDirection, which
initiates the rotateTower task.

• The (rotateTower ?t1 ?t2 ?t3 task has a single
method with two subtasks: moving the smallest ring from
?t1 to ?t2, then starting the (exchange ?t1 ?t2
?t3) task.

• The (exchange ?t1 ?t2 ?t3) has three methods:
– An empty one if ?t1 and ?t3 are clear.
– exchangeLR which moves ?t1 to ?t3 if ?t1 is the

smaller.
– exchangeRL which moves ?t3 to ?t1 if ?t1 is the

larger.
The later two methods then recurse to (rotateTower
?t2 ?t3 ?t1) to continue the solution.
The problem generator1 for the Towers domain takes the

number of rings as a parameter, and generates problem files
with a single tower of rings. The problem generator out-
puts in PDDL format, which had to be hand adapted for the
HDDL format of the HTN IPC (Höller et al. 2020). The IPC
contained 20 problems with 1 to 20 rings.

References
[Alford, Bercher, and Aha 2015] Alford, R.; Bercher, P.; and

Aha, D. 2015. Tight bounds for HTN planning. In ICAPS,
volume 25, 7–15. AAAI Press.

[Alford et al. 2016] Alford, R.; Behnke, G.; Höller, D.;
Bercher, P.; Biundo, S.; and Aha, D. 2016. Bound to plan:
Exploiting classical heuristics via automatic translations of
tail-recursive HTN problems. In ICAPS, volume 26, 20–28.
AAAI Press.

[Alford, Kuter, and Nau 2009] Alford, R.; Kuter, U.; and
Nau, D. S. 2009. Translating HTNs to PDDL: A small
amount of domain knowledge can go a long way. In IJCAI,
1629–1634. AAAI Press.

[Höller et al. 2020] Höller, D.; Behnke, G.; Bercher, P.; Bi-
undo, S.; Fiorino, H.; Pellier, D.; and Alford, R. 2020.
HDDL: An extension to PDDL for expressing hierarchical
planning problems. In AAAI, volume 34, 9883–9891.

1https://github.com/ronwalf/HTN-Translation/blob/master/
examples/towers/genTowers.hs

The 10th International Planning Competition – Planner and Domains Abstracts

33

HTN Planning Domain for Deployment of Cloud Applications

Ilche Georgievski
Service Computing Department

Institute for Architecture of Application Systems
University of Stuttgart

firstname.lastname@iaas.uni-stuttgart.de

Abstract
Cloud providers are facing a complex problem in configur-
ing software applications ready for deployment on their in-
frastructures. Hierarchical Task Network (HTN) planning can
provide effective means to solve such deployment problems.
We present an HTN planning domain that models deployment
problems as found in realistic Cloud environments.

Introduction
The choice of enterprises to have their software applications
deployed and run on Cloud infrastructures is motivated by
elasticity, flexibility, scalability and high availability, which
are the promised benefits of Cloud Computing (Buyya et al.
2009). Before being able to deploy an application, Cloud
management teams have to find, choose and configure ap-
propriate software components that will compose the appli-
cation, thus making it ready for deployment. Solutions to
such deployment problems are typically configured manu-
ally or using predefined scripts. Both approaches seem im-
practical for Cloud management as they are error-prone and
require strenuous effort to handle a large number of com-
ponents, versions of components and high interdependence
between components (Binz et al. 2014). Cloud providers and
Cloud Computing community are therefore in need for ap-
proaches and tools that can solve deployment problems au-
tomatically (Arshad, Heimbigner, and Wolf 2003).

Artificial Intelligence (AI) planning can provide powerful
means to automatically and efficiently search for solutions
to deployment problems. Hierarchical Task Network (HTN)
planning appears to be particularly suitable as it can incorpo-
rate the configuration knowledge otherwise provided by the
Cloud management teams. In this paper, we describe HTN
planning problems that correspond to deployment problems.
We first introduce the component model used for describing
deployment problems, and then we describe an HTN plan-
ning domain that models such deployment problems.

Component Model
Aelous is a component model used to describe software
applications as found in realistic Cloud deployments (Di
Cosmo et al. 2014). A central element of Aeolus is a com-
ponent, a manageable software resource that provides and

requires functionalities. Each component has three states:
uninstalled, installed, and running. State transitions are done
using deployment actions. For example, we can run an in-
stalled component by invoking a runComponent action on it.
A component may require or provide different functionality
at each state. The requirement of functionality is expressed
via require ports, and providing of functionality through
provide ports. A component can transition from one state to
another only if the functionality the new state requires can
be provided by other component(s). When a component goes
to a new state, its require ports are bound to appropriate pro-
vide ports of other component(s). This process is called port
binding. Once a component is in the new state, its provide
ports become active via port activation. Since a component
transitions from some state, its ports must be deactivated and
unbound via port deactivation and port unbinding.

This component model has two interesting features. First,
since component represent abstract entities, they must be in-
stantiated. The peculiarity comes from the fact that the cre-
ation of new uninitialised component instances happens on
demand during runtime. The second feature is that a cycle
may occur between states of different component instances:
an instance is expected to provide a functionality, but it is
not possible because the instance is required to change its
state at the same time (Lascu, Mauro, and Zavattaro 2013).
We can deal with such cycles by creating as many instances
of the same component as needed, and deploying them in
different states. This process is called instance duplication.

A configuration describes all available components, cur-
rently deployed component instances and their states, and
current bindings of components via ports. A deployment
problem consists of an initial configuration, a set of deploy-
ment actions, and a request for a new configuration, i.e.,
application. The solution is a deployment run, which is a
sequence of deployment actions on components that, when
deployed, produce the required configuration.

Deployment Planning Domain
We now describe the deployment HTN domain model that
encodes deployment problems. Our description is based on
the paper in which we introduced the HTN planning ap-
proach to solving deployment (Georgievski et al. 2017).

The 10th International Planning Competition – Planner and Domains Abstracts

34

Components, States and Ports
We describe components, instances, and ports using
component instance port as domain types. Each com-
ponent type would be represented as an object of
component. For example, a Wordpress component would
be represented as wordpress - component.

Even though Aelous associates components with states,
component instances are the ones to be in a specific state
during planning. We encode a state of an instance in a pred-
icate “(state instance)”, where state is a string representing
the instance’s state, and instance is a variable representing
the component instance. For example, (installed w1)
represents a Wordpress instance w1 in an installed state.

We encode the association of states with ports in a
predicate “(statePort component port)”, where statePort
is a string describing the type of port in a specific
state, and component is a variable referring to an ab-
stract component that requires or provides a port repre-
sented by the port variable. For example, if Wordpress
requires the httpd port in the installed state, we encode
it as (installed-require wordpress httpd). Note
that such knowledge holds for all instances of the respective
component. These predicates are static predicates.

Deployment Actions
We encode all deployment actions as planning actions as fol-
lows. Action’s parameters correspond either to a component
instance variable or to variables of a port and two instances
in the case of binding actions (see below). The precondi-
tions and effects of each action capture the semantics of
the respective deployment action. Listing 1 shows the action
that corresponds to the startComponent deployment action,
which makes the state of an instance to become installed.
It uses a conditional effect within a universal quantifier to
activate all the ports associated with the installed state of
the component which the current instance belongs to. The
encoding of the actions for running, stopping and terminat-
ing component instances are similar. There are also binding
actions responsible for low-level binding of ports – require
ports are bound to provide ports. They are represented by
two planning actions. The bind action creates a binding be-
tween a provide port of some instance and a require port of
another one, and the unbind action deletes an already es-
tablished binding between two instances.

The last action is for creating new uninitialised in-
stances. The createInstance action shown in Figure 2
uses a domain function to get (and increase) a num-
ber that we use to uniquely represent an instance in
a predicate as (instance ?iNum - number). The do-
main function does not take arguments and serves as
a counter to keep track of the current value that can
be assigned for new instances. The action uses another
predicate, (type ?iNum - number ?c - component),
to associate a new instance with a particular component.

Configuration Processes
We now describe the encoding of processes needed for con-
figuring applications. The basic process requires satisfaction

Listing 1: HTN action for starting a component instance.
(: a c t i o n s t a r t

:parameters (? i − i n s t a n c e)
: p r e c o n d i t i o n (not (i n s t a l l e d ? i))
: e f f e c t (and

(i n s t a l l e d ? i)
(f o r a l l (? p − p o r t) (when

(and (i n s t a l l e d − p r o v i d e ? c ? p)
(t y p e ? i ? c))

(a c t i v e ? p ? i))
)

)
)

Listing 2: HTN action for creating an uninitialised compo-
nent instance.
(: a c t i o n c r e a t e I n s t a n c e

:parameters (? c − component)
: p r e c o n d i t i o n ()
: e f f e c t (and

(i n s t a n c e (i n s t a n c e − n u m b e r))
(t y p e (i n s t a n c e − n u m b e r) ? c)
(i n c r e a s e (i n s t a n c e − n u m b e r) 1)

)
)

of dependencies to functionalities provided by components.
Let us assume that an instance in an uninstalled state can-
not have requirements to be satisfied. We may then consider
two abstractions of the basic process. The first one refers
to acquiring a component functionality in an installed state,
while the second abstraction refers to establishing a func-
tionality in a running state. HTNs naturally enable encod-
ing knowledge at different levels of abstraction; we can for-
mulate tasks and encode high-level strategies in the meth-
ods of these tasks before reasoning on low-level primitive
tasks (Georgievski and Aiello 2015).

We encode each abstraction as a compound task, namely
install and run. Their methods encode specific configu-
ration processes. One such method encodes the prerequisites
for port activation. If the current component instance has re-
quire ports that are not active, the method first activates each
port and makes a recursive call until all necessary ports are
activated. The actual process of port activation is encoded
in a separate task, which not only activates a required func-
tionality, but also finds and installs (or runs) a component
instance that provides that functionality. An instance with
active require ports can then use the functionalities of other
components with active provide ports. This is achieved by
another method that encodes the port binding. For this pro-
cess, the method depends directly on the binding actions. In
addition to the methods for port activation and binding, there
is a method for the case when all require ports are active and
bound. To address the satisfaction of all require ports, we
use a universal quantifier with implication in the method for

The 10th International Planning Competition – Planner and Domains Abstracts

35

both tasks, install and run. In the case of run, we have
to deactivate the ports that will be no longer provided by the
instance in the installed state. The process of port deactiva-
tion is similar to the process of port activation and it uses
port unbinding. The process of port unbinding is more com-
plex than the binding one, and requires checking for con-
straint violation. That is, we have to take care of active pro-
vide ports bound to active require ports. We use a separate
task to encode the port unbinding. The unbindPorts task
does nothing when the port is bound and needed for the next
transition. When all necessary constraints are satisfied, it un-
binds a specific port and recursively calls itself.

There are methods in install and run that deal with
the case when there are no required functionalities for an
instance. This means that we need a transition which can be
handled by installing the component instance directly. In the
case of running an instance, we invoke the port deactivation
task to ensure a valid transition to the running state.

The modelling of the transitions from a running state to an
installed state and further to an uninstalled state is analogous
to the encoding of the tasks we described so far.

Finally, we encode instance duplication as a separate
method. The method makes sure that the current component
instance is in a specific state and it has at least one provide
port bound. Consequently, a new component instance is cre-
ated either in an installed state or in a running state, depend-
ing on the type of configuration.

Final Remarks
Our HTN planning domain model encodes realistic Cloud
deployment problems. Using this domain, one can gener-
ate a problem file by specifying components and ports as
objects, component states and ports as predicates, currently
deployed instances as predicates, current states of deployed
instances as predicates, bindings as predicates, and initial-
ising the domain function to some value. Listing 3 shows
an example of a problem file for the deployment of Word-
press, and Listing 4 shows its plan. Finally, HTN planning
problems with varying difficulty can be generate automati-
cally by manipulating the states and ports of components, as
described in (Georgievski et al. 2017).

Acknowledgments
We thank Faris Nizamic, Alexander Lazovik and Marco
Aiello for the discussions on earlier versions of the domain.
We also thank Gregor Behnke for the valuable insights on
the domain encoding and for transforming the domain to a
suitable specification for the IPC 2020 on HTN planning.

References
Arshad, N.; Heimbigner, D.; and Wolf, A. L. 2003. Deploy-
ment and dynamic reconfiguration planning for distributed
software systems. In IEEE International Conference on
Tools with Artificial Intelligence, 39–46.
Binz, T.; Breitenbücher, U.; Kopp, O.; and Leymann, F.
2014. TOSCA: Portable Automated Deployment and Man-
agement of Cloud Applications. Springer. 527–549.

Listing 3: HTN problem file
(d e f i n e (problem p)

(:domain dep loyment)
(: o b j e c t s

w o r d p r e s s mysql apache2 − component
h t t p d mysql− in mysql−up − p o r t

)
(: i n i t

(i n s t a l l e d − r e q u i r e w o r d p r e s s h t t p d)
(r u n n i n g − r e q u i r e w o r d p r e s s h t t p d)
(r u n n i n g − r e q u i r e w o r d p r e s s mysql−up)
(i n s t a l l e d − p r o v i d e apache2 h t t p d)
(i n s t a l l e d − p r o v i d e mysql mysql− in)
(r u n n i n g − p r o v i d e mysql mysql−up)
(= (i n s t a n c e − n u m b e r) 0)

)
(: h t n

: t a s k s (run w o r d p r e s s)
: o r d e r i n g ()
: c o n s t r a i n t s ()

)
)

Listing 4: Example plan for the problem in Listing 3
1 . (c r e a t e I n s t a n c e w0)
2 . (c r e a t e I n s t a n c e w1)
3 . (s t a r t a1)
4 . (b in d h t t p d w0 a1)
5 . (s t a r t w0)
6 . (c r e a t e I n s t a n c e m2)
7 . (s t a r t m2)
8 . (run m2)
9 . (b in d mysql−up w0 m2)
1 0 . (run w0)

Buyya, R.; Yeo, C. S.; Venugopal, S.; Broberg, J.; and
Brandic, I. 2009. Cloud Computing and Emerging IT Plat-
forms: Vision, Hype, and Reality for Delivering Computing
as the 5th Utility. Future Gener. Comput. Syst. 25(6):599–
616.
Di Cosmo, R.; Mauro, J.; Zacchiroli, S.; and Zavattaro, G.
2014. Aeolus: A component model for the cloud. Informa-
tion and Computation 239:100–121.
Georgievski, I., and Aiello, M. 2015. HTN planning:
Overview, comparison, and beyond. Artificial Intelligence
222:124–156.
Georgievski, I.; Nizamic, F.; Lazovik, A.; and Aiello, M.
2017. Cloud Ready Applications Composed via HTN Plan-
ning. In IEEE International Conference on Service Oriented
Computing and Applications, 23–33.
Lascu, T. A.; Mauro, J.; and Zavattaro, G. 2013. A Planning
Tool Supporting the Deployment of Cloud Applications. In
IEEE International Conference on Tools with Artificial In-
telligence, 213–220.

The 10th International Planning Competition – Planner and Domains Abstracts

36

Snake Domain for HTN IPC 2020

Maurı́cio Cecı́lio Magnaguagno
Independent researcher

maumagnaguagno@gmail.com

Abstract

This is a description of the Snake domain and problem
generator submitted to the HTN IPC 2020 total order
track. In the Snake domain the goal is to hunt mice
spread over multiple locations, with one or more snakes
that get longer as they strike each mouse.

Introduction
The Snake domain is based on the homonymous game genre,
in which snakes move to clear locations or strike a nearby
mice in a grid/graph-based scenario, the mice do not move
as they are too afraid. Each snake occupies one or more ad-
jacent locations due to their long body. The goal is to hunt
all the mice or have the snakes occupying certain locations
(which forces them to eat and grow). Multiple plans may
exist in some scenarios due to snakes being able to strike
mice with different orderings and paths. Plans contain zero
or more movement actions and one strike per mouse. Differ-
ently from the game where usually only one mouse is visible
at a time, all mice are visible to give more choice. The do-
main was motivated by the creative way in which one can de-
scribe the snake actions without updating all the snake parts
and the little amount of objects required to describe a snake.
This paper presents the Snake domain and problem genera-
tor1 for PDDL (McDermott et al. 1998), HDDL (Höller et al.
2020) and (J)SHOP input language (Ilghami and Nau 2003).

Domain
The domain requires :typing, :equality and :negative-
preconditions in PDDL, and also :method-preconditions and
:universal-preconditions in HDDL. The JSHOP domain im-
plicitly has the same HDDL requirements. Universal precon-
ditions are used to verify that every location does not contain
a mouse and the hunting task is complete.

Types
All objects are either snake or location. This removes the
need to have more objects to define each mouse and snake
parts. Removing such objects makes descriptions simpler
and grounding faster due to fewer parameters. We use

1https://github.com/Maumagnaguagno/Snake

(mouse-at ?location) instead of (at ?mouse ?location) to re-
move the ?mouse parameter from the strike action. If we had
opted for snake parts we would have multiple descriptions of
each long snake, causing a state-space explosion.

Predicates
The state is described by only a few predicates. Locations
are occupied to avoid overlapping snake parts and mice dur-
ing movement actions, and also used to simulate walls. Lo-
cations that are adjacent constrain the range of actions. A
snake head location is used to constrain the range of actions
of each snake. The sequence of locations occupied by each
snake are connected, with the last part being the tail.

Actions/Operators
Three actions/operators exist in this domain. The strike ac-
tion represents the mouse being consumed by an adjacent
snake head. Two movement actions are used to describe a
single or multiple location snake movement, move-short and
move-long, respectively. Move was split in two to minimize
the amount of ground actions without the use of disjunc-
tions. The JSHOP version also contains explicit visit/unvisit
operators to avoid infinite loops. The signatures of actions
are shown in Listing 1.

Listing 1: Signatures of Snake actions with types ommited.
(: a c t i o n s t r i k e :parameters (

? snake ? headpos ? foodpos))
(: a c t i o n move−short :parameters (

? snake ? n e x t p o s ? s n a k e p o s))
(: a c t i o n move−long :parameters (
? snake ? n e x t p o s ? headpos ? bodypos ? t a i l p o s))

Tasks and Methods
Two tasks are described in the JSHOP and HDDL versions,
with 5 methods in total. The first task is hunt, with zero pa-
rameters, used as the main task. Two methods are used for
this task, a recursive one to select one snake that will strike
a mouse, and a base one for no more mice. The base case is
described after the recursive method as it happens only once,
when all mice have been consumed.

The second task is move, with a snake, its head and goal
location as parameters. Here we have a base method and two
recursive ones to use the move-long and move-short actions.

The 10th International Planning Competition – Planner and Domains Abstracts

37

The move-base case is described first to avoid redundant ex-
pansions in planners that follow the description order. The
move-short is the last case described as it is less common.
The signatures of tasks and their related methods are shown
in Listing 2.

Listing 2: Signatures of Snake tasks and related methods.
(: t a s k hun t :parameters ())
(:method h u n t a l l :parameters (? snake

? foodpos ? s n a k e p o s ? pos1))
(:method h u n t d o n e :parameters ())
(: t a s k move :parameters (? snake

? s n a k e p o s ? g o a l p o s))
(:method move−base :parameters (

? snake ? s n a k e p o s ? g o a l p o s))
(:method move−long−snake :parameters (

? snake ? s n a k e p o s ? g o a l p o s ? pos2
? bodypos ? t a i l p o s))

(:method move−short−snake :parameters (
? snake ? s n a k e p o s ? g o a l p o s ? pos2))

Problem
Each problem contains snakes and locations as objects. Each
snake must contain at least a head and tail described in the
initial state. If head and tail are on the same location, single
location snake, there is no need to connect snake parts. Each
mouse location must be described in the initial state. Loca-
tions that contain snake parts, mice or walls are occupied.
Locations must be adjacent to one another to describe pos-
sible paths. Adjacencies are usually symmetrical, (adjacent
l1 l2) (adjacent l2 l1), and grid-based, but are not limited to.

For goal-based planning it may include snakes’ final con-
figuration and mice not existing anymore. For task-based
planning it may include movement and hunting tasks. Due
to the possibly large amount of mice, it is recommended to
use a quantifier to describe a goal state without mice or tasks
to hunt every mouse.

Problem generator
Currently a text representation, like the one from Sokoban2,
can be used with our problem generator. Each character in
a text file represents one element of the Snake problem in a
grid-based scenario:
• Space: clear location
• @: snake head location
• $: snake body location

• *: mouse location
• #: wall location

Currently limited to a single snake with snake parts ad-
jacent only to previous and next locations to avoid ambigu-
ity. Walls are converted to always occupied locations, but
could also be represented as lack of adjacencies to these lo-
cations, which would be harder to manually modify later.
Multiple problems in this format are already available, they
were manually crafted to generate longer solutions or force
certain paths for the snake to be able to strike all mice.

The current problem generator converts all *.snake files in
the current folder or the ones provided as arguments accord-
ing to a type argument, generating *.snake.type files. Type
includes pddl, hddl and jshop.

2http://www.sokobano.de/wiki/index.php?title=Level format

Example
The content of the input pb2.snake is presented in Listing 3.
With the execution of the problem generator, ruby pbgenera-
tor.rb hddl pb2.snake, we obtain an HDDL equivalent prob-
lem. The output pb2.snake.hddl is presented in Listing 4.

∗ \n
$\n
@

Listing 3: Snake input file example with 3x3 grid,
two-parts snake and a mouse.

Listing 4: HDDL description of converted pb2.snake.
(d e f i n e (problem pb2) (:domain snake)

(: o b j e c t s v i p e r − snake
px0y0 px1y0 px2y0
px0y1 px1y1 px2y1
px0y2 px1y2 px2y2 − l o c a t i o n)

(: i n i t (head v i p e r px2y2)
(c o n n e c t e d v i p e r px2y2 px2y1)
(t a i l v i p e r px2y1)
(mouse−at px0y0)
(o c c u p i e d px0y0)
(o c c u p i e d px2y1)
(o c c u p i e d px2y2)
(a d j a c e n t px0y0 px1y0)
. . . ; A d j a c e n c i e s ommited
(a d j a c e n t px2y2 px2y1))

(:h tn : s u b t a s k s (hun t)))

Conclusion
This domain presents several features to help planner test-
ing. All planning instances can be described in the compact
format used by the generator, converted to images and easily
modified by hand. The planning instances can scale indefi-
nitely, as larger grids accept more mice and longer snakes,
however it requires a smart random level generator to cre-
ate such larger instances with unique challenges. Heuristic
planners can estimate which snake is closer to each mouse to
minimize actions, while considering that long snakes create
moving walls that affect such estimations. Numeric planners
could take even more advantage in regular grids. In the fu-
ture we expect to improve the problem generator with mul-
tiple snakes and their goal locations. Multiple snakes could
also modify the domain, with the requirement of moving all
snakes every time-step, like the real game.

References
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
Proceedings of the 34th AAAI Conference on Artificial In-
telligence (AAAI 2020), 9883–9891. AAAI Press.
Ilghami, O., and Nau, D. S. 2003. A General Approach
to Synthesize Problem-Specific Planners. Technical Report
CS-TR-4597, Maryland University, Dept of Computer Sci-
ence, College Park, Maryland.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL-
the planning domain definition language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control.

The 10th International Planning Competition – Planner and Domains Abstracts

38

The Barman-HTN Domain for IPC 2020

Max Waters, Lin Padgham, Sebastian Sardina
RMIT University, Melbourne, Australia

max.waters@rmit.edu.au, sebastian.sardina@rmit.edu.au, lin.padgham@rmit.edu.au

Abstract

The Barman-HTN domain is an HTN decomposition of the
IPC Barman domain. It extends Barman with a task network
that guides cocktail creation while retaining the primitive op-
erators that made the original so challenging for the delete-
relaxation heuristic.

The Barman-HTN domain is an HTN extension of the
well-known IPC Barman domain (López, Celorrio, and
Olaya 2015), in which cocktails must be prepared out of var-
ious ingredients. Solving a Barman instance requires careful
management of limited resources. For example, shot glasses
and shakers must be clean and empty before use, but fill-
ing one with an ingredient deletes both of these conditions,
meaning that it must be emptied and cleaned before re-use.
This makes Barman particularly challenging for planners
that use the delete-relaxation heuristic: as action precondi-
tions are frequently deleted and can only be restored by ex-
ecuting further actions, delete-relaxation tends to produce
overly optimistic estimates.

This property of the domain operators, combined with re-
cent interest in the delete-relaxation heuristic in HTN plan-
ners (Höller, Bercher, and Behnke 2020) and the fact that the
cocktail construction task can be naturally decomposed into
subtasks, suggest that Barman is a suitable basis for an HTN
benchmark domain.

Barman-HTN extends Barman with an HDDL (Höller
et al. 2020) task network that guides the pouring and
mixing of ingredients and also provides careful resource
management. For example, the method MakeCocktail
(Figure 1) decomposes the task of mixing and shaking
a cocktail. The first subtask, AchieveCleanShaker, en-
sures that the shaker is clean and empty, and the two in-
stances of AchieveContainsShakerIngredient ensure
that it contains the required ingredients. The next two steps,
AchieveHolding and AchieveHandEmpty, ensure that
one hand is empty and the other is holding the shaker. These
subtasks satisfy the preconditions of the final step, the action
shake, which results in the shaker containing the cocktail.

Resource management is handled by tasks and methods
that bring about a required condition from any given state.
For example, the task AchieveHolding(?h, ?c) pro-
duces the condition holding(?h, ?c), and is decomposed
by two methods. If hand ?h is already holding container ?c,

(:method MakeCocktail

:parameters (?s - shaker ?c - cocktail

?i_1, i_2 - ingredient ?h_1, ?h_2 - hand)

:task (AchieveContainsShakerCocktail ?s ?c)

:precondition (and

(cocktailPart1 ?c ?i_1) (cocktailPart2 ?c ?i_2)

(not (= ?h_1 ?h_2)))

:ordered-subtasks (and

(AchieveCleanShaker ?s)

(AchieveContainsShakerIngredient ?s ?i_1)

(AchieveContainsShakerIngredient ?s ?i_2)

(AchieveHolding ?h_1 ?s)

(AchieveHandEmpty ?h_2)

(shake ?c ?i_1 ?i_2 ?s ?h_1 ?h_2)))

(:method PickUp

:parameters (?h - hand ?c - container)

:task (AchieveHolding ?h ?c)

:precondition (not (holding ?h ?c))

:ordered-subtasks (and

(AchieveHandEmpty ?h) (AchieveOnTable ?c)

(grasp ?h ?c)))

Figure 1: The MakeCocktail and Pickup methods.

then the empty method AchieveHoldingNull is applica-
ble. Otherwise, PickUp (Figure 1) decomposes the task into
AchieveHandEmpty(?h) and AchieveOnTable(?c),
that satisfy the preconditions of the primitive action
grasp(?h, ?c) by ensuring that ?h is empty and ?c can
be picked up, respectively. The task network contains other
such decompositions for resource management tasks such as
cleaning glasses and shakers, and emptying hands.

References
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
AAAI 2020, 9883–9891. AAAI Press.
Höller, D.; Bercher, P.; and Behnke, G. 2020. Delete- and
Ordering-Relaxation Heuristics for HTN Planning. In IJCAI
2020, 4076–4083. IJCAI.
López, C. L.; Celorrio, S. J.; and Olaya, A. G. 2015. The de-
terministic part of the seventh International Planning Com-
petition. Artificial Intelligence 223: 82–119.

The 10th International Planning Competition – Planner and Domains Abstracts

39

The Hierarchical Satellite Domain

Bernd Schattenberg1

3B intelligent solutions, Germany, schattenberg@3b-intelligent-solutions.com
1 The domain was created while still being at the Institute of Artificial Intelligence of Ulm University

Abstract

The Satellite domain is one of the classical benchmark do-
mains in the canon of the International Planning Competition.
This paper describes our hierarchical take on it.

Introduction
The hierarchical Satellite domain is inspired by space appli-
cations that are a first step towards the “Ambitious Space-
craft” as described by David Smith at the AIPS 2000 confer-
ence (Smith, Frank, and Jónsson 2000). It involves planning
a set of stellar observation tasks for multiple autonomous
satellites, each equipped with slightly different but possibly
overlapping technologies. The equipment consists of obser-
vation instruments with different characteristics in terms of
data productions, so-called modes like thermal images, x-
ray, etc., for which corresponding calibration targets are de-
fined. Satellites are motile and can be oriented towards arbi-
trary stellar target objects by slewing the complete platform
between different attitudes/directions. A benchmark prob-
lem in this domain is consequently given by an initial state
that describes the satellite configurations and stellar phe-
nomena positions, while the goal state specifies of which
observation targets an image has to be taken in which mode.

The Satellite domain has been introduced as a classical
benchmark to the planning community in the 2002 install-
ment of IPC. We have developed a hierarchical version of
it in order to analyse planning strategy designs for hybrid
planning systems (Schattenberg, Weigl, and Biundo 2005;
Schattenberg, Bidot, and Biundo 2007), from which the pre-
sented, purely hierarchical version has been derived.

This document focuses on the design decisions that led
to the hybrid planning domain model for the formal frame-
work introduced in (Biundo and Schattenberg 2001; Schat-
tenberg 2009), i.e., on adding hierarchical features to a non-
hierarchical domain model (cf. (Pragst et al. 2014)).

Types and Relations
The first step in translating the original Satellite domain into
a hierarchical formalism is to introduce a type hierarchy.
While the PDDL encoding already defined the types for satel-
lites, directions, instruments, and (image) modes, we think

that this does not capture an essential feature of the prob-
lem instances: the defined directions are obviously divided
into the actual observation phenomena that are of scientific
interest and attitude points that are only used for calibration
purposes. This aspect is incorporated in the type hierarchy
by providing a general purpose Direction as super-type
for Calib Direction and Image Direction.

In our formal hybrid-planning framework, we also anno-
tated the direction super type to be abstract, i.e. a concep-
tual type for which no constant declaration is allowed. The
rationale for such a language feature is to identify types that
are intended to be exclusively used for structuring the appli-
cation domain concepts, thus supporting modelling tools to
validate problem and domain consistency.

When it comes to specifying relation symbols for express-
ing predicate sentences or facts about the world state, HDDL
and PDDL models explicitly provide the relation symbols’
signatures in its declaration header. However, they do not ex-
plicitly denote whether actions (are allowed to) manipulate
the respective attributes, or, in more formal terms, they do
not discriminate flexible and rigid relations. Instead, state-
invariant features are typically extracted from the domain
model during pre-processing.

The original model’s documentation plus some common
sense suggest to adhere to the following partitioning of
relation symbol declarations: Flexible relations are

• pointingSatellite,Direction
• power availSatellite
• have imageImage Direction,Mode

• power onInstrument
• calibratedInstrument

The pointing relation is used for expressing that a satel-
lite platform (the first argument in any atom over this rela-
tion), and with it all on-board instruments, aim at a given
direction (the second argument of such atoms). Slewing the
satellite therefore implicitly controls the orientation of the
desired instrument as well. power avail and power on
reflect that energy is a limited resource on the observa-
tion platform and that therefore only one instrument can be
served at a time. On-board observation systems typically
have to take reference images for calibrating the sensors
and if an instrument is ready for taking images, its status
changes to calibrated. In a state in which the image

The 10th International Planning Competition – Planner and Domains Abstracts

40

of a phenomenon is finally taken a respective atom over
have image is supposed to hold.

The relations representing state-invariant facts are:
• on boardInstrument,Satellite
• supportsInstrument,Mode
• calibration targetInstrument,Calib Direction

This includes the relation for modelling which instruments
which satellite carries, which kind of sensor the instrument
provides, and what the reference object for calibrating a
given instrument is.

Actions, Tasks, and Methods
The action specifications can be directly taken from the orig-
inal non-hierarchical PDDL description:
• turn toSatellite,Direction,Direction
• switch onInstrument,Satellite
• switch offInstrument,Satellite
• calibrateSatellite,Instrument,Calib Direction

• take imageSatellite,Image Direction,Instrument Mode

The intended meaning of these five operator signatures be
self explanatory. The corresponding action definitions ba-
sically implement conditional switching operations for the
intended state feature, e.g.:
(:action switch_on

:parameters (?so_i - instrument
?so_s - satellite)

:precondition
(and (on_board ?so_i ?so_s)

(power_avail ?so_s))
:effect

(and (power_on ?so_i)
(not (calibrated ?so_i))
(not (power_avail ?so_s))))

It is the operator that routes energy to a given instrument
on the observation platform, it switches power from avail-
able to not available. In this way, no two instruments can be
used in parallel on one satellite. The second precondition for
the action assures the required instrument to be on board the
given satellite, which merely enforces a consistent binding
of the two parameters. Please note that although this partic-
ular style of modeling introduces a considerable amount of
redundancy in the Satellite action definitions, any processing
that is aware of the underlying state-invariance will reduce
the unnecessary branching at this point.

When we analyzed the IPC benchmark problems for this
domain, it occurred to us that there obviously exists an in-
tended procedure for taking satellite images and that all so-
lutions follow that pattern with minor deviations: Making an
observation for a given sensor mode and phenomenon firstly
consists of choosing a suitable instrument, which in turn in-
directly determines the satellite that performs the observa-
tion. In a second step, the instrument has to be routed energy
to and properly calibrated. The satellite finally slews in the
direction of the target phenomenon and takes the image.

This procedure is plausible enough to be considered not as
a specification artefact that has been accidentally introduced
by the competition initiators but as an underlying principle
in the Satellite domain and consequently a clue for a well-
reasoned action abstraction. An apparent structure is to build

an abstraction for each of the two phases: preparing the in-
strument and taking the picture becomes an abstract task
do observation with parameters for the desired phe-
nomenon to observe and the mode to support. The prepa-
ration phase seems to require an abstraction hierarchy on its
own, in order to encapsulate the different ways of getting
the sensory system on-line (the instrument is already on and
calibrated, some other instrument has to be turned off first in
order to raise the energy level properly, etc.). We therefore
introduced an abstract action for activating the instrument
and for dealing with the calibration. The resulting (complex)
tasks are consequently the following three:
• do observationImage Direction,Mode

• activate instrumentSatellite,Instrument
• auto calibrateSatellite,Instrument

We intended to define the complex task schemata in the
fashion of ABSTRIPS operator reductions (Sacerdoti 1974).
That means, we do not employ state abstraction axioms (cf.
(Biundo and Schattenberg 2001)) but simply generalize the
preconditions and effects of the primitive implementations,
like in the following example:
(:task activate_instrument

:parameters (?ai_s - satellite
?ai_i - instrument)

:precondition
(and (on_board ?ai_i ?ai_s))

:effect (and (power_on ?ai_i)))

Given these complex and primitive tasks, the methods of
the domain model set up a decomposition hierarchy that im-
plements the different observation procedures as described
above. Please note that this decomposition hierarchy does
not impose semantic restrictions on the solution space.

The following method method0 implements an obser-
vation by sequentially activating the instrument, turning the
satellite, and taking the image:
(:method method0
:parameters
(?d_prev - direction ?sat - satellite
?d_im - image_direction
?i - instrument ?mode - mode)

:task
(do_observation ?d_im ?mode)

:subtasks (and
(task0 (activate_instrument ?sat ?i))
(task1 (turn_to ?sat ?d_im ?d_prev))
(task2 (take_image ?sat ?d_im ?i ?mode)))

:ordering (and (task0 < task1)
(task1 < task2))

:constraints (and
(sortof ?d_im - image_direction)
(not (= ?d_im ?d_prev))))

The parameters section introduces all variable names used
for task node parameters and variable constraints. By bind-
ing the same variable consistently to different sub-task ex-
pressions, the corresponding task schema parameters are ex-
plicitly co-designated. For example, the target image direc-
tion for the observation task is the same for the slewing task
turn to and the actual image taking.

The abstract activation task task0 can further be decom-
posed into two variants, one dealing with another instrument

The 10th International Planning Competition – Planner and Domains Abstracts

41

having to be turned off first, the other for situations in which
the satellite has energy already available.

The implementation of the calibration process
auto calibrate is either atomic in the context of
other observation tasks or it has to perform a preparatory
slew into the calibration direction first.

The main combinatorial problem in this domain boils
down to the question of how to establish the pointing
state features. Along the decomposition hierarchy, any ob-
servation is self-contained such that the turning operation af-
ter a calibration step is properly instantiated and eventually
will be fully causally supported from within the surrounding
network actions. If a plan, however, contains multiple obser-
vation operations that are only developed to an intermediate
level, there is typically some confusion about causal sup-
port with respect to the orientation of the satellite. Let us
therefore briefly investigate the issues of implementing an
observation in the presence of other observations.

A problem in the Satellite domain is typically given by a
number of abstract observation tasks. The domain model of-
fers four implementation variants, the applicability of which
depends on the observation contexts:
1. First, the instrument is activated, then the satellite turns

to the direction of scientific interest and finally takes the
image. This is the base case for isolated (sub-) problems
as explained above.

2. The instrument might be properly calibrated from previ-
ous observations. In this case, it suffices to slew the satel-
lite and take the image.

3. Problems with many jobs may take advantage of decom-
positions that provide an activation-imaging skeleton for
which the slews can be filled in later by task insertion
modifications. This method therefore provides the causal
information that connects activation and usage of the sen-
sor. Please note that this requires planners that perform
task insertion as well.1

4. If the configuration supports task insertion (like in the
previous case) or if we have to deal with exceptional sit-
uations in which more than one image is required of a
phenomenon, the fourth variant solely consists of a direct
translation into taking the image.

Concluding Remarks
Satellite induces refinement spaces that contain many iso-
morphic plans, constructed around exactly one complex
task: observation. The different methods do thereby not pro-
vide alternative ways of performing that task but rather de-
fine the configuration or situational environment of the ob-
servation process: with or without calibration, with or with-
out preparation slews, and the like.

But the Satellite domain has several nice properties due to
which it qualifies as an interesting demonstration and bench-
mark domain for hierarchical planning systems.

The main advantage is the intuitive simplicity of the appli-
cation domain and the underlying principles. This also holds

1Like PDDL, HDDL requires types to be disjunct and therefore
no calibration target can, at the same time, be an object of scientific
interest, which in turn allows no solutions for this method.

for future model extensions like incorporating temporal in-
formation, addressing energy consumption, etc. Any modi-
fication can easily be explained and its effects on the solu-
tion generation process investigated. It is also a relatively
simple task to algorithmically generate problems, to vali-
date solutions, and to judge problem complexity as well as
solution quality. In contrast to other simple benchmark sce-
narios, planning for satellite observations exhibits satisfying
variety and extension options.

Another observation on Satellite benchmark problems is
that this domain allows to control problem complexity, for
example in order to determine the scaling behaviour of a
strategy, in several dimensions.

For example, the mildly sophisticated scaling by cloning
observation jobs and scientific equipment, leads to an in-
creasing number of self-similar sub-problems. Although this
may be the intended scientific focus, it has to be taken into
account that this kind of complexity may not favour a gen-
erally well performing search strategy. It makes solving ten
times more observations “more difficult” in a similar way
than stacking ten times more blocks did for non-hierarchical
planning at the time.

In contrast, we can define benchmark problems with an
increasing number of observation jobs that require an in-
creasing number of modes and instruments on a constant
number of satellites. This induces an increasing number of
interacting sub-goals and causal interferences. As a conse-
quence, solution density in the search space will decline.

A last aspect is the amount of overlapping target require-
ments, respectively instrument capabilities: if a set of obser-
vations can be performed by single platforms sequentially
as well as by multiple platforms in parallel, optimality of
the solutions becomes more and more an issue.

References
Biundo, S., and Schattenberg, B. 2001. From abstract cri-
sis to concrete relief – a preliminary report on combining
state abstraction and HTN planning. In ECP 2001, 157–168.
AAAI Press.
Pragst, L.; Richter, F.; Bercher, P.; Schattenberg, B.; and Bi-
undo, S. 2014. Introducing hierarchy to non-hierarchical
planning models - a case study for behavioral adversary
models. In PuK 2014.
Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence 5(2):115–135.
Schattenberg, B.; Bidot, J.; and Biundo, S. 2007. On the con-
struction and evaluation of flexible plan-refinement strate-
gies. In KI 2007, 367–381. Springer.
Schattenberg, B.; Weigl, A.; and Biundo, S. 2005. Hy-
brid planning using flexible strategies. In KI 2005, 249–263.
Springer.
Schattenberg, B. 2009. Hybrid Planning & Scheduling.
Ph.D. Dissertation, Ulm University, Germany.
Smith, D. E.; Frank, J.; and Jónsson, A. K. 2000. Bridging
the gap between planning and scheduling. The Knowledge
Engineering Review 15(1):47–83.

The 10th International Planning Competition – Planner and Domains Abstracts

42

The Hierarchical Woodworking Domain

Bernd Schattenberg1,* and Pascal Bercher2,*

1 3B intelligent solutions, Germany, schattenberg@3b-intelligent-solutions.com
2 The Australian National University, Australia, pascal.bercher@anu.edu.au

* The domain was created while still being at the Institute of Artificial Intelligence of Ulm University, Germany

Abstract

The Woodworking domain is one of the classical benchmark
domains in the canon of the International Planning Competi-
tion. This paper describes our hierarchical take on it.

Introduction
The hierarchical Woodworking domain models workflows
in a workshop setting. Wooden boards are cut into parts
of required sizes, which are planed, smoothened, and fi-
nally painted in specified colours and qualities. The various
spray and varnish paints thereby require different prepara-
tion treatments of the respective wooden surface. Combina-
tions of these process steps into proper workflows are pro-
vided by the decomposition methods.

The main causal interactions on a task level occur when
some of the heavier workshop tools abrade the surface of
wooden items, thereby undoing previous treatment steps.
Other minor planning-sub-problems emerge when some of
the machinery involved only allows for processing one item
at a time. In its current version, this merely imposes limita-
tions on possible plan linearisations but may become subject
to plan optimization for resource-aware planners.

The Woodworking domain has been introduced as a
benchmark to the planning community in 2008 for IPC 6.
We have developed a hierarchical version of it in order
to analyse planning strategy designs for hybrid planning
systems using landmarks (Elkawkagy et al. 2012; Bercher,
Keen, and Biundo 2014) and this domain model has finally
been translated into the current, purely hierarchical version.

This short description focuses on the design decisions that
led to the hybrid planning domain model for the formal
framework introduced by Biundo and Schattenberg (2001)
and Schattenberg (2009), that means, on the specifics of
adding hierarchical features to a non-hierarchical domain
model (cf. the work by Pragst et al. (2014)).

Mechanics of the Model
The type hierarchy of Woodworking establishes three main
categories of objects: the wooden targets of creative hand-
icraft (woodobj), workshop machines (machine), and a
general object type. Wooden objects can be either boards or

parts with the latter being obtained from the former by cut-
ting them out. The type object is the most general type
and an entry point for declaring constants representing spe-
cific wood materials, colours, and the like.

Regarding the state-variant features, most of the predi-
cates describe the processing states of the processed wooden
objects. This includes the following:
• unusedpart
• boardsizeboard,aboardsize
• treatmentpart,treatmentstatus
• surface conditionwoodobj,surface

• colourpart,acolour
• woodwoodobj,awood
• availablewoodobj

State features built from unused and available serve as
semaphore, respectively book-keeping implementations for
the pre-defined pool of part and wooden object constants.
E.g., once a wooden object is used in a process step as a
part, i.e., if a process step objective is assigned the respec-
tive constant, that very part constant is taken from the pool
of available constants by negating its unused property. As
a side effect of this technique, the wood property has to be
passed on from the raw board (for which it’s technically un-
changeable) to its processed part artefact.

While the rest of the above state features is straight for-
ward with more intuitive semantics, the following state-
invariant relations require some examination:
• machine presentmachine
• has colourmachine,acolour
• goalsizepart,apartsize
• boardsize successoraboardsize,aboardsize
• grind treatment changetreatmentstatus,treatmentstatus
• is smoothsurface
• contains partboard,part
Machine present denotes the availability of mo-

bile workshop machines and corresponds to availability of
wooden objects – of course, machines are not used up in
the process. Similarly, colour is used to describe painted
parts, while has colour represents the colour a respective
workshop machine has at its disposal.

Sizes and treatment states are modeled by explicitly stat-
ing the available constants in a problem description. On
these values, a simple symbolical computation is axioma-
tised implicitly in the task specifications: Parts, the process
target objects, can have a goalsize of small, medium or

The 10th International Planning Competition – Planner and Domains Abstracts

43

large. On the other hand, boards, i.e. the process source
materials, are described via the state-variant boardsize,
which is supposed to have at least three discrete values. The
board size symbols are arranged according to the facts over
the boardsize successor predicate. The rationale is
now a very high-level abstraction of a wood-cutting pro-
cess, in which small sized parts reduce the board size by one
boardsize successor, medium sized ones by two, and
large sized ones by three.

Please note that the current version of the hierarchical
Woodworking domain, as does its non-hierarchical origin,
does not yet support a re-use of the remaining boards after a
part has been cut from them. Furthermore, the intention be-
hind contains part was unfortunately not documented,
as it had not been used in any domain element.

The remaining physics of surface treatment by grinding
(levels of removing varnish from wooden surfaces) is rep-
resented by the grind treatment change in a similar
way like what we have shown for board sizes.

Regarding action specifications, the following operation
for varnishing a part by means of immersion can serve as a
common example for the domain:
(:action do_immersion_varnish
:parameters (?p - part

?m - immersion_varnisher
?c - acolour
?s - surface)

:precondition
(and (available ?p)

(has_colour ?m ?c)
(surface_condition ?p ?s)
(is_smooth ?s)
(treatment ?p untreated))

:effect
(and (not (treatment ?p untreated))

(treatment ?p varnished)
(colour ?p ?c)))
(not (colour ?p natural))

Similar actions specifications are used for other means of
applying colour to the wood object, basically depending on
surface condition and treatment status. Grinding and plan-
ing are implemented analogously, emphasising the change
of surface condition, colour stripping, and the like.

When analysing the original IPC benchmark problems for
this domain, it becomes apparent that the intended proce-
dure for processing wooden parts follow a general pattern:
cutting and sawing a board in order to obtain a suitably sized
part, grinding or planing that part to achieve the desired sur-
face condition, and finally applying a specific paint to real-
ize a specific colour and treatment. The hierarchical Wood-
working domain captures this pattern of sub-processes by
defining corresponding abstract tasks like cut and saw,
grindNplane and the like. The resulting decomposition
hierarchy is relatively flat with one major intermediate level
of abstract tasks that allow for alternative decompositions
into the process options as described above.

We defined the complex task schemata in the fashion
of ABSTRIPS operator reductions (Sacerdoti 1974). That
means, we do not employ state abstraction axioms as de-
scribed by Biundo and Schattenberg (2001) but simply gen-

eralise the preconditions and effects of the primitive imple-
mentations. The most abstract task, the processing objective,
is thus defined as follows:
(:task process
:parameters (?p - part ?c - acolour

?oldS - surface
?newS - surface)

:effect (and (colour ?p ?c)))

On this level of abstraction, processing consists of colour-
ing a wooden part with all causal interactions delegated to
the expansion methods. The methods themselves implement
the different process variants by combining related tasks into
modular subroutines. Please note that the decomposition hi-
erarchy does not impose semantic restrictions on the solu-
tion space.

Properties of the Model
The domain is partially ordered and acyclic. It contains six
abstract tasks, 13 primitive tasks, and 14 methods, where
each task has between two and four methods. The IPC set
contains 30 problem instances of various degrees of hard-
ness. The first eleven instances were modeled by hand by
the authors and are relatively easy with maximal shortest
solution lengths of 15 steps. The remaining problem in-
stances were created by a random generator, written by Gre-
gor Behnke (based on an existing one for the original do-
main). The hardest instance has a shortest solution with 178
steps. Using the grounder by Behnke et al. (2020), we can re-
port that the number of ground primitive and abstract tasks
as well as decomposition methods ranges from a few dozen
for the lower first (smaller) problem instances until 87.680
primitive tasks, 120.819 abstract tasks, and 592.235 decom-
position methods for the largest problem instance.

References
Behnke, G.; Höller, D.; Schmid, A.; Bercher, P.; and Biundo,
S. 2020. On succinct groundings of HTN planning prob-
lems. In Proceedings of AAAI 2020, 9775–9784. AAAI.
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid planning
heuristics based on task decomposition graphs. In Proceed-
ings of SoCS 2014, 35–43. AAAI.
Biundo, S., and Schattenberg, B. 2001. From abstract crisis
to concrete relief – a preliminary report on combining state
abstraction and HTN planning. In Proceedings of ECP 2001,
157–168. AAAI Press.
Elkawkagy, M.; Bercher, P.; Schattenberg, B.; and Biundo,
S. 2012. Improving hierarchical planning performance by
the use of landmarks. In Proceedings of AAAI 2012, 1763–
1769. AAAI Press.
Pragst, L.; Richter, F.; Bercher, P.; Schattenberg, B.; and Bi-
undo, S. 2014. Introducing hierarchy to non-hierarchical
planning models - a case study for behavioral adversary
models. In Proceedings of PuK 2014.
Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence 5(2):115–135.
Schattenberg, B. 2009. Hybrid Planning & Scheduling.
Ph.D. Dissertation, Ulm University, Germany.

The 10th International Planning Competition – Planner and Domains Abstracts

44

The HTN Domain “Factories”

Malte Sönnichsen,1 Dominik Schreiber2

Karlsruhe Institute of Technology
1malte@soennichsen.xyz 2dominik.schreiber@kit.edu

Introduction
In this paper we present the benchmark domain “Factories”
for Hierarchical Task Network (HTN) planning written in
the HDDL format (Höller et al. 2020).

In this benchmark domain, the planning objective is to
construct a factory by satisfying a dependency graph on cer-
tain resources while using trucks to deliver the needed re-
sources from one place to another. As such, our domain is a
crossover of traditional logistics and transport domains with
a producer-consumer problem.

Overview
An input problem consists of f factories, d dependencies,
and t trucks. Each factory requires certain resources in order
to be built, which are the factory’s dependencies, and is able
to produce certain resources when built. As such, the prob-
lem’s factories depend on each another: The construction of
some factory F may require the construction of other facto-
ries which produce the resources necessary to construct F .
This renders the problem recursive and makes the choice of
a hierarchical planning model natural. The set of dependen-
cies can be seen as a Directed Acyclic Graph (DAG) induced
by the required and produced resources of each factory.

Transporting resources from a producer to a consumer re-
quires trucks. There can be multiple trucks in the problem,
so the tactical choice of which truck should do the delivery
can lead to varying plan lengths.

In order to avoid complex conditions, we introduced com-
posite resources which are fused from two other resources.
This way, a factory has at most one resource demand in the
HDDL while the number of needed actual resources can
be arbitrarily high. Also, for the sake of simplicity, the re-
sources a certain factory requires for its construction and for
producing a resource itself are identical.

Generating Problems
Our problem generator script features three inputs which are
(i) the number of factories, (ii) the maximum number of
resource dependencies per factory, and (iii) the number of
trucks. The graph of locations is generated as a simple undi-
rected circle of n locations with up to n additional random
edges, where n is set to twice the number of factories and

(:method m_factory_already_constructed
:parameters (?f - factory

?l - location)
:task (construct_factory ?f ?l)
:precondition (factory-at ?f ?l)
:subtasks ()

)
(:method m_construct_factory

:parameters (?f - factory
?r - resource
?l - location)

:task (construct_factory ?f ?l)
:precondition (and

(demands ?f ?r)
(location-free ?l)
(not (factory-constructed ?f))

)
:ordered-subtasks (and

(get_resource ?r ?l)
(construct ?f ?r ?l)

)
)

Figure 1: The two methods which decompose the initial task
(construct factory ?f ?l).

trucks. Trucks are placed randomly in the graph. Dependen-
cies are introduced to the problem by iterating over the facto-
ries “from left to right” and repeatedly adding dependencies
of the current factory to a resource that some factory to the
left produces. This ensures that the dependency graph is in
fact acyclic and can be ordered. The first factory has no re-
sources and the final factory is the destination object to be
constructed.

Properties
The Factories domain is recursive, i.e., it may feature task T
as a possible subtask in a method for task T . The domain is
totally ordered.

The domain makes use of positive and negative method
preconditions. All constraints are stated conjunctively
(“STRIPS-style”), i.e., as a list of literals.

We think the Factories domain is an appealing bench-

The 10th International Planning Competition – Planner and Domains Abstracts

45

construct_factory ?factory ?location

m_factory_already_constructed m_construct_factory

get_resource ?resource ?location

m_resource_there m_get_resources_and_fuse

get_resource get_resource fuse

m_get_resource

construct_factory produce_resource ?factory ?resource

m_produce_resource

produce-without-demands

m_get_and_produce_resource

get_resource produce

deliver_resource ?resource ?l_start ?l_end

m_deliver_resource

goto ?truck ?location

m_already_there m_goto

move goto

pickup goto drop

construct

Figure 2: Illustration of the hierarchy of the Factories domain. Rectangles represent primitive tasks, circular containers represent
composite tasks, and blue rectangles with rounded corners represent methods. Dashed lines denote the choice (OR) of a method,
straight lines denote sequences (AND) of subtasks. Dotted arrows hint to recursive subtask relationships.

mark domain because it is a very natural application of hi-
erarchical planning and because the problem size is easily
scaleable up to dimensions which are very difficult for com-
mon HTN planners while the problem description stays rela-
tively compact. A problem’s properties can be steered using
the three input parameters: Increasing the number of trucks
makes grounding more difficult and produces higher num-
bers of methods per task. Conversely, increasing the number
of factories increases the overall size of the task network,
and increasing the number of dependencies makes the prob-
lem more “logically dense” while increasing the size of the
task network to a moderate degree.

With our simple problem generation, the non-trivial de-
cisions a planner has to make “only” involves the choice
of which trucks should deliver which resources and which
factory to place at which position; still, it is an inter-
esting domain to benchmark planners on because it tests
their ability to ground (if applicable) and search this quite
straight-forward hierarchical structure as efficiently as pos-
sible. Moreover, the resulting plan length may vary consider-
ably based on a planner’s strategic decisions regarding truck
assignments and factory placements, so we believe that the

domain lends itself to evaluations concerning plan quality
and plan optimization techniques.

Although heavily idealized, we imagine that our domain’s
structure can be adapted to a plethora of similar tasks that
feature DAG-like dependencies.

Acknowledgments
Many thanks to Gregor Behnke for finding, and proposing
fixes to, several bugs.

References
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An extension to
PDDL for expressing hierarchical planning problems. In
AAAI, 9883–9891.

The 10th International Planning Competition – Planner and Domains Abstracts

46

The Smartphone Domain

Pascal Bercher1,* and Susanne Biundo2 and Bernd Schattenberg3,*

1 The Australian National University, Australia, pascal.bercher@anu.edu.au
2 Institute of Artificial Intelligence, Ulm University, Germany, susanne.biundo@uni-ulm.de

3 3B intelligent solutions, Germany, schattenberg@3b-intelligent-solutions.com
* The domain was created while still being at the Institute of Artificial Intelligence of Ulm University, Germany
The domain was written by Bastian Seegebarth, formerly at Ulm University. Authors are ordered alphabetically.

Abstract

This extended abstract is about the Smartphone domain, sub-
mitted as a benchmark domain to the IPC 2020.

The Smartphone Model
Companion Technology (Biundo and Wendemuth 2016;
2017) enables every-day technical systems to become really
user-friendly – those companion systems adapt their func-
tionality to the individual user’s current situation, emotional
state, and needs. Companion Technology involves various
scientific disciplines (Biundo et al. 2016), and AI planning
plays a key role as it allows a goal-directed behavior of sys-
tems and provides many further user-centered technologies,
such as plan explanations (Bercher et al. 2017).

In earlier work we described how AI planning can be used
to enhance the operation of a Smartphone (Biundo et al.
2011). Fig. 1 illustrates some of the menus of the (actual)
smartphone that was modeled. There, we already described
excerpts of the model, such as parts of the sort and task hier-
archy. The actual working model was, however, created later
on by our former colleague Bastian Seegebarth under the su-
pervision of Bernd Schattenberg. The model allows to carry
out various standard tasks done regularly, such as sending
messages (via various means like SMS or email), attaching
pictures, creating new and deleting contacts, etc.

The original model (also available in the respective repos-
itory) was written for a hybrid planning formalism (Biundo
and Schattenberg 2001; Schattenberg 2009; Bercher et al.
2016), which fuses Hierarchical Task Network (HTN) plan-
ning with Partial Order Causal Link (POCL) planning. That
model also used state abstraction axioms that define a hier-
archy on state features, to be exploited for preconditions and
effects of abstract tasks. For the submission to the IPC, all
these “hybrid” features were stripped away, resulting into a
pure HTN model. The model is cyclic and partially ordered.

The domain ended up not being selected for the IPC, be-
cause only seven problem instances were modeled, and no
random generator for further instances was provided. All do-
mains for the IPC feature 30 problem instances, but model-
ing further instances by hand turned out to be too hard due
to the complex structure of the model.

Figure 1: Illustration of the Smartphone that was modeled.

References
Bercher, P.; Höller, D.; Behnke, G.; and Biundo, S. 2016.
More than a name? On implications of preconditions and
effects of compound HTN planning tasks. In ECAI, 225–
233. IOS Press.
Bercher, P.; Höller, D.; Behnke, G.; and Biundo, S. 2017.
User-centered planning. In Biundo, S., and Wendemuth, A.,
eds., Companion Technology – A Paradigm Shift in Human-
Technology Interaction, Cognitive Technologies. Springer.
chapter 5, 79–100.
Biundo, S., and Schattenberg, B. 2001. From abstract crisis
to concrete relief – a preliminary report on combining state
abstraction and HTN planning. In ECP, 157–168. AAAI.
Biundo, S., and Wendemuth, A. 2016. Companion-
technology for cognitive technical systems. Künstliche In-
telligenz 30(1):71–75. doi: 10.1007/s13218-015-0414-8.
Biundo, S., and Wendemuth, A., eds. 2017. Companion
Technology – A Paradigm Shift in Human-Technology Inter-
action. Cognitive Technologies. Springer.
Biundo, S.; Bercher, P.; Geier, T.; Müller, F.; and Schatten-
berg, B. 2011. Advanced user assistance based on AI plan-
ning. Cognitive Systems Research 12(3-4):219–236.
Biundo, S.; Höller, D.; Schattenberg, B.; and Bercher, P.
2016. Companion-technology: An overview. Künstliche In-
telligenz 30(1):11–20.
Schattenberg, B. 2009. Hybrid Planning & Scheduling.
Ph.D. Dissertation, Ulm University, Germany.

The 10th International Planning Competition – Planner and Domains Abstracts

47

