
HyperTensioN
A three-stage compiler for planning

Maurı́cio Cecı́lio Magnaguagno1, Felipe Meneguzzi2 and Lavindra de Silva3

1Independent researcher
2School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil

3Department of Engineering, University of Cambridge, Cambridge, UK
maumagnaguagno@gmail.com

felipe.meneguzzi@pucrs.br

lavindra.desilva@eng.cam.ac.uk

Abstract

Hierarchical Task Networks (HTN) planners generate
plans using a decomposition process with extra domain
knowledge to guide search towards a planning task.
While many HTN domain descriptions are made by ex-
perts, they may repeatedly describe the same precondi-
tions, or methods that are rarely used or possible to be
decomposed. By leveraging a three-stage compiler de-
sign we can easily support more language descriptions
and preprocessing optimizations that when chained can
greatly improve runtime efficiency in such domains. In
this paper we present the HyperTensioN HTN planner,
as it was submitted to the HTN IPC 2020.

Introduction

Hierarchical planning was originally developed as a means
to allow planning algorithms to incorporate domain knowl-
edge into the search engine using an intuitive formal-
ism (Ghallab, Nau, and Traverso 2004). Hierarchical Task
Network (HTN) is the most widely used formalism for hi-
erarchical planning, having been implemented in a variety
of systems rendered in different (though conceptually simi-
lar) input languages (de Silva, Lallement, and Alami 2015;
Nau et al. 2003; Ilghami and Nau 2003). Recent research
has re-energized work on HTN planning formalisms and
search procedures, leading to a new generation of HTN plan-
ners (Bercher et al. 2017; Höller et al. 2018; Höller et al.
2020a; Höller et al. 2020b). In this paper, we outline key de-
sign elements, features, and optimizations of the HyperTen-
sioN planner, as submitted to the 2020 International Plan-
ning Competition (IPC)1. Specifically, we focus on the com-
pilation of HTN instances into Ruby programs, as well as
the optimizations based on transformation of HTN domains
and problems to minimize backtracking.

Three-stage design architecture

HyperTensioN was originally developed to automatically
convert classical planning instances to hierarchical plan-
ning instances (Magnaguagno and Meneguzzi 2017). This
required at least a PDDL (McDermott et al. 1998) parser
(front-end) and a (J)SHOP (Ilghami and Nau 2003) descrip-
tion compiler (back-end). By keeping front-end and back-

1ipc-2020.hierarchical-task.net

Hype

parsers extensions compilers

domain.*

HDDL

problem.*

PDDL

JSHOP

Typredicate

Patterns

. . .

Ruby
(HTN)

Pullup

Dejavu

PDDL

JSHOP

domain.*'

problem.*'

DOT

Markdown

HyperTensioN

Figure 1: Hype acts as a three-stage compiler before linking
Ruby outputs with the HyperTensioN planner.

end separate it was also possible to add a Ruby compiler
to generate code compatible with our implementation of a
lifted Total Forward Decomposition (TFD) (Ghallab, Nau,
and Traverso 2004, chapter 11) planner. This compilation
approach is very similar to that in JSHOP (Ilghami and Nau
2003). Parser and compiler modules share an Intermediate
Representation (IR) that represents the planning instance
data, which middle-end extensions can further process. Ex-
tensions fill gaps between description languages, analyze or
optimize descriptions, independent of the target planner/out-
put language.

This level of flexibility facilitates developing support for
new languages, while remaining compatible with the already
available extensions. For example the DOT (Ellson et al.
2001) compiler for debugging and the HDDL (Höller et al.
2020a) parser for the IPC. As the project grew, the three-
stage compiler and the TFD planner modules split in two, as
shown in Fig. 1. The Hype tool controls module execution
at each stage, allowing multiple middle-ends to run, even re-
peatedly, before compilation into the target representation.
The HyperTensioN TFD planner completes the Ruby (HTN)
compiler output to finish this pipeline with the plan output.
Eventually, we extended the core HyperTensioN search pro-
cedure to a variety of other planning tasks, including search
on hybrid symbolic-numeric domains (Magnaguagno and
Meneguzzi 2020).

The 10th International Planning Competition – Planner and Domains Abstracts

5



Domain transformation

To improve planning speed the compiler was optimized to
compress the state structure by removing rigid predicates
and treating them as “constant information”. More impor-
tantly, we developed extensions to improve the IR to sup-
port: (1) better unification exploiting type information; (2)
early testing of rigid parts of method/action preconditions
during decomposition; and (3) a cycle detection mechanism.

Typredicate

This extension involves constraining the substitutions at-
tempted on variables occurring in predicates, by making bet-
ter use of constant/parameter types (if the domain expert has
not already done so). For example, suppose the predicate
(at ?obj – object ?pos – position) is defined in the domain,
which is used in the action (move ?obj – vehicle ?pos – posi-
tion) to both check and update a vehicle’s position. Suppose
also that we are given the following type hierarchy: “person
vehicle position – object”. Then, though the move action will
never require nor modify the position of a person, the ?obj
variable occurring in the precondition of the action may still
be substituted by constants of type person, as ?obj is defined
in the predicate to be of the parent type object. Since con-
stants of type person and vehicle are mutually exclusive by
virtue of being subtypes of the same parent type, we pre-
clude such substitutions by specializing (at ?obj – object
?pos – position) into predicates (at-vehicle ?obj – vehicle
?pos – position) and (at-person ?obj – person ?pos – posi-
tion), and replacing occurrences of (at ?obj ?pos) with the
appropriate specialized predicates in the domain, initial state
and goal. Typredicate currently only specializes predicates
to the leaves of the type hierarchy, but it can be straightfor-
wardly extended to specialize to intermediate levels. Typred-
icate is not limited to typed domains, as it can infer types
based on unary rigid predicates contained in preconditions,
e.g. (person ?obj). By specializing predicates we make plan-
ning more efficient, as unification uses smaller (disjoint) sets
of objects, i.e., without extraneous objects, while also mak-
ing the Pullup extension more “complete”.

Pullup

The Pullup extension implements the main optimization
technique that underpins HyperTensioN’s performance by
“pulling up” preconditions in the hierarchy. A literal in the
precondition (which is a conjunction/set of literals) of an ac-
tion occurring in a method is added (after variable substitu-
tions) to the precondition of the method if the literal is not
possibly brought about by an earlier step in the method, i.e.,
any solution for the method will require the literal to hold
at the start; a literal is deemed to be possibly brought about
(cf. “mentioned” (de Silva, Sardina, and Padgham 2016)) by
a step if there is a literal asserted by an action yielded by the
step s.t. the two literals have the same predicate symbol.2 We
pull up method preconditions as follows. A (possibly pulled
up) literal in the precondition of a method is deemed to be
part of the precondition of the task that is accomplished by

2We also implemented a stronger notion, closer to that of “men-
tioned”, but saw no improvement w.r.t. the sample IPC domains.

the method if the literal is “locally rigid”, i.e., shared by all
method preconditions related to the same task. Given a plan-
ning problem, each iteration of the algorithm pulls up literals
by one level, starting from preconditions of actions, and the
algorithm terminates when it reaches a fixed point–when no
literals “moved” in the previous iteration.

A literal that is always pulled up from an action/method
precondition is removed from it, as the literal will be tested
earlier in the decomposition. Moreover, using the planning
problem, literals that are always true (w.r.t. the problem)
are removed from preconditions based on the unifications
that are possible, and actions/methods that contain contra-
dictions in preconditions are removed together with their as-
sociated “branches”. Interestingly, branch removal may en-
able pulling up additional literals by exposing “hidden” (see
(de Silva, Sardina, and Padgham 2016)) rigid literals.

Dejavu

Some domains may have methods with direct recursion,
where a method includes the same task that it decomposes,
or indirect recursion, requiring further decomposition before
the (same) task is encountered. Without “visited” predicates
used by a domain expert to mark (register) and query vis-
ited partial states, such domains can induce an infinite loop
for a TFD (Ghallab, Nau, and Traverso 2004) search proce-
dure. Dejavu transforms the domain by adding “unobserv-
able” primitive tasks (that are not part of valid plans) to mark
and unmark the fact that a particular non-primitive task is
being decomposed, and predicates to detect when the task is
being recursively (re)attempted. Information relating to such
cycles is stored across decomposition branches using an ex-
ternal cache structure, as the state loses the marked infor-
mation upon backtracking. The cache saves which methods
and unifications have been explored in previous branches to
avoid repeating decompositions that previously led to fail-
ure. Domains with cyclic tasks without parameters lack the
required information to cache the task signature, which con-
tains the variable bindings for the method decomposing the
task. In such domains we fallback to a full state comparison
with previously visited states at each cyclic task. HyperTen-
sioN can still detect stack overflows, and safely backtrack
in case the cycle detection mechanism fails. Dejavu, while
limited, proved critical for HyperTensioN’s performance, as
it allows TFD to efficiently drive search, while avoiding its
key limitation in recursive domains.3

Comparison

We now compare the improvements obtained by the above
extensions w.r.t. some sample (pre-competition) and ac-
cepted IPC 2020 domains. We selected 4 domains in which
the improvements were more visible. The experiments were
run on Windows 7, on an Intel E5500 2.8GHz CPU with
3.25GB of RAM, using a 60s time-out.

3We only compare Dejavu’s ability to detect indirect recursion,
as detecting direct recursion is currently always active.

The 10th International Planning Competition – Planner and Domains Abstracts

6



Woodworking

Woodworking (Bercher, Keen, and Biundo 2014) is based
on a benchmark from earlier IPCs. It describes tasks for
working with wood, such as cutting, polishing and finishing.
With Pullup, two extra problems were solved within our time
limit, with one of them taking less than a second as shown
in Fig. 2. Many problems in this domain seemed to require
selecting the right values among many available objects be-
fore continuing exploration, as otherwise too much time was
spent on backtracking, causing time-out.

0

10

20

30

40

50

60

0 2 4 6 8 10 12

T
im

e
 (

s
)

Problem (index)

No extensions
Typredicate
Pullup
Typred+Pullup
Typred+Pullup+Dejavu

Figure 2: Time in seconds to solve Woodworking problems.

Rover

Rover involves robots navigating a planet, collecting infor-
mation and sending it to a lander. The HTN domain was
developed for SHOP (Nau et al. 1999) based on problem
instances from earlier IPCs. Pullup improves the results for
Rover, although most instances are solvable even without
extensions; only one reaches the time-out as shown in Fig. 3.

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20

T
im

e
 (

s
)

Problem (index)

No extensions
Typredicate
Pullup
Typred+Pullup
Typred+Pullup+Dejavu

Figure 3: Time in seconds to solve Rover problems.

Transport

Transport (Behnke, Höller, and Biundo 2018) describes a
domain where delivery trucks with limited capacity must
pick and drop packages at specific cities connected by a road
network. Transport is one of the few domains where each
extension shows an impact on planning time, as shown in
Fig. 4. Typredicate is able to specialize the “at” predicate,
avoiding some unifications with non-vehicle objects. Pullup
is able to move important constraints only defined in the

leaves of the HTN structure, e.g. the need for a road between
two cities in order to drive between them. Note that this do-
main does not contain method preconditions. With Typredi-
cate and Pullup combined the Transport instances are solv-
able in less than 0.2s.

0

10

20

30

40

50

60

0 5 10 15 20 25 30

T
im

e
 (

s
)

Problem (index)

No extensions
Typredicate
Pullup
Typred+Pullup
Typred+Pullup+Dejavu

Figure 4: Time in seconds to solve Transport problems.

Snake

In Snake,4 one or more snakes need to move to clear lo-
cations or strike nearby mice in a grid/graph-based world.
The domain benefits from Dejavu, i.e., the planner avoids
unifications that recursively expands the same task, which
may start an infinite loop. Since Dejavu’s direct recursion
detection is always used, its effect is not visible in the graph,
but required to avoid reaching the same positions repeatedly.
Observe from Fig. 5 that Pullup shows a bigger improve-
ment in planning time in the most complex instances.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18 20

T
im

e
 (

s
)

Problem (index)

No extensions
Typredicate
Pullup
Typred+Pullup
Typred+Pullup+Dejavu

Figure 5: Time in seconds to solve Snake problems.

The IPC release of HyperTensioN was not able to parse
the Entertainment and Monroe domains correctly. With the
parser fixed, new results were obtained on the same ma-
chine, which matched the IPC samples’ timings. The first
5 of 12 Entertainment instances were solved in under 1s, the
sixth in 42s, the seventh in 740s, and the eighth in 235s; oth-
ers exceeded the IPC time limit (1800s). All Monroe-Fully-
Observable instances were solvable, most in a few seconds
and the last two in 32s. The Monroe-Partially-Observable in-
stances were not solvable within the time limit. The results

4https://github.com/Maumagnaguagno/Snake

The 10th International Planning Competition – Planner and Domains Abstracts

7



Table 1: HyperTensioN’s (Hype) fixed and IPC results.
Domain(instances) Fixed Hype Lilotane PDDL4J-TO

AssemblyHierarchical(30) 3 3 5 2
Barman-BDI(20) 20 20 16 11
Blocksworld-GTOHP(30) 16 16 22.1 16
Blocksworld-HPDDL(30) 30 30 1 0
Childsnack(30) 30 30 29 20.9
Depots(30) 24 24 23.4 23
Elevator-Learned(147) 147 147 147 2
Entertainment(12) ∼5.9 0 4.6 4.6
Factories-simple(20) 3 3 4 0
Freecell-Learned(60) 0 0 7.7 0
Hiking(30) 25 25 21.3 17
Logistics-Learned(80) 22 22 43.2 0
Minecraft-Player(20) 5 5 1 1
Minecraft-Regular(59) 57.1 57.1 29.2 23
Monroe-FO(20) ∼17.7 0 20 20
Monroe-PO(20) 0 0 20 1
Multiarm-Blocksworld(74) 8 8 4 0
Robot(20) 20 20 11 6
Rover-GTOHP(30) 30 30 21.3 27.5
Satellite-GTOHP(20) 20 20 15 20
Snake(20) 20 20 17.1 20
Towers(20) 17 17 10 16
Transport(40) 40 40 35 33.2
Woodworking(30) 7 7 30 6

Total(892) ∼567.7 544.1 537.9 270.2
Normalized(24) ∼14.88 13.50 11.60 7.47

are shown in Table 1 with the highest values (sometimes ob-
tained by two participants) in bold. Only participants who
obtained the highest value at least once were included.

Conclusion

This paper presented HyperTensioN, an approach to plan-
ning using a three-stage compiler designed to support op-
timizations in multiple domain description languages. The
flexibility introduced by the front and back-end modules
makes it easy to support new domain description languages,
while the middle-end pipeline opens the door for multi-
ple transformation and analysis tools to be executed be-
fore planning. The key to its performance in the IPC is
a set of domain transformation techniques that replicates
domain-knowledge optimizations commonly used to speed
up search in previous HTN planners such as JSHOP2 (Il-
ghami and Nau 2003), as well as the optimizations often
used by agent interpreters, e.g. (Thangarajah, Padgham, and
Winikoff 2003). With our domain transformations it was
possible to not only improve the HTN structure for SHOP-
like (blind Depth First-Search) planners using Typredicate
and Pullup, but also to avoid recomputing parts of complex
combinatoric domains such as Transport and Snake using
Dejavu. Future work includes stronger tree modification-
s/specializations, support for more complex domain descrip-
tions, and a compilation to a low-level language to obtain a
native planner executable.
Acknowledgements: Felipe Meneguzzi acknowledges sup-
port from CNPq with projects 407058/2018-4 (Universal)
and 302773/2019-3 (PQ Fellowship).

References

Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT-
Totally-Ordered Hierarchical Planning Through SAT. In
AAAI, 6110–6118.

Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017. An
Admissible HTN Planning Heuristic. In IJCAI, 4384–4390.
IJCAI.

Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid planning
heuristics based on task decomposition graphs. In SoCS.

de Silva, L.; Lallement, R.; and Alami, R. 2015. The HATP
hierarchical planner: Formalisation and an initial study of its
usability and practicality. In IROS, 6465–6472.

de Silva, L.; Sardina, S.; and Padgham, L. 2016. Summary
information for reasoning about hierarchical plans. In ECAI,
1300–1308.

Ellson, J.; Gansner, E.; Koutsofios, L.; North, S. C.; and
Woodhull, G. 2001. Graphviz—open source graph draw-
ing tools. In GD, 483–484. Springer.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning: theory & practice. Elsevier.

Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018.
A Generic Method to Guide HTN Progression Search with
Classical Heuristics. In ICAPS.

Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020a. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
AAAI, 9883–9891. AAAI Press.

Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020b.
HTN Planning as Heuristic Progression Search. JAIR
67:835–880.

Ilghami, O., and Nau, D. S. 2003. A General Approach
to Synthesize Problem-Specific Planners. Technical Report
CS-TR-4597, Maryland University, Dept of Computer Sci-
ence, College Park, Maryland.

Magnaguagno, M. C., and Meneguzzi, F. 2017. Method
composition through operator pattern identification. KEPS
2017 54.

Magnaguagno, M. C., and Meneguzzi, F. 2020. HTN Plan-
ning with Semantic Attachments. In AAAI. AAAI Press.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL-
the planning domain definition language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control.

Nau, D.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In IJCAI, 968–
973.

Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN plan-
ning system. JAIR 20:379–404.

Thangarajah, J.; Padgham, L.; and Winikoff, M. 2003. De-
tecting & Avoiding Interference Between Goals in Intelli-
gent Agents. In IJCAI, 721–726.

The 10th International Planning Competition – Planner and Domains Abstracts

8


