The 10th International Planning Competition — Planner and Domains Abstracts

AssemblyHierarchical — Connecting Devices through Cables

Gregor Behnke
University of Freiburg
Freiburg im Breisgau, Germany
behnkeg @informatik.uni-freiburg.de

Abstract

We report on the AssemblyHierarchical domain, which en-
codes the task of connecting devices through a set of avail-
ables cables.

Introduction

We report on the idea and structure behind the domain As-
semblyHierarchical, which was part of the benchmark set of
the total order track of the IPC 2020. The AssemblyHier-
archical domain was inspired by the Assembly Assistant
(Bercher et al. 2014; 2015; 2017; 2018) developed in the
Transregional Collaborative Research Centre SFB/TRR 62
“Companion-Technology for Cognitive Technical Systems”
funded by the German Research Foundation (DFG). The as-
sistant was designed to help a (usually novice) user to set up
his or her home entertainment system. In this setting, there
are multiple signal sources (satellite receiver, VCR, DVD
player, ...) as well as multiple signal sinks (TV, speaker,
...). These devices need to be connected using only the
available cables and intermediate devices (e.g. amplifiers).
Adapters might have to be used to connect a given cable
with a device. The assistant determines — based on the avail-
able cables and devices — how the cables should be used and
instructs its user to plug them into the appropriate devices.
The assistance system implemented within the SFB/TRR
62 used planning to determine how to connect cables to de-
vices. The AssemblyHierarchical domain is more general
than the original one used by the assistant in the sense that
it describes any arbitrary flow of an opaque signal from one
device to another — this can be a video, audio, network, USB,
or any other type of signal. The original domain was rather
restrictive in the allowed operations and plans. The difficulty
in modelling is due to the duality of the problem in this set-
ting — plugging in cables and transmitting a signal — which
can only be easily modelled using e.g. derived predicates,
which in turn are computationally expensive. The problem
stems from situations as follows. Consider four devices A,
B, C, and D and cables connecting A and B, B and C,
and C and D. To transmit a signal from A to D we can
plug in these cables in any order. This signal is at any time
only transmitted as far as the outgoing connection of A is

19

plugged in. Notably, it is possible to plug in the cable from
A to B last which will instantaneously cause the signal to be
available at D. As noted before, this can be modelled with
derived predicates or additional actions for signal transmis-
sion. The latter becomes much more complicated if we also
allow for cables to be unplugged since signals also have to
be “un-propagates”. The AssemblyHierarchical domain we
present in this paper actually supports unplugging cables.

Hierarchical planning is rather well suited to model this
task. We can use a generator-style recursion of the HTN to
allow for cables to be plugged in. The last decomposition
of this generator will result in an abstract task that checks
whether the connection has actually been established. This
can be done solely via method preconditions.

Domain

As all other domains in the IPC, the AssemblyHier-
archical domain is formulated in HDDL (Holler et al.
2020). We distinguish three types of AbstractDevices:
Devices (representing larger devices), Cables, and
Adapters. Each AbstractDevice has a number of
Ports, which have a PlugFace (either male or female)
and a PlugDirection (in, out, or both). A Port de-
scribes any point of an Abst ractDevice that can be con-
nected to anoter AbstractDevice. For example a Port
of a TV might be connectable to the end of a cable — which is
also a Port. A male port can only be connected to a female
port. Further, an in-port can only be connected to an out- or
both-type port and an out-port only to an in- or both-type
port. Each Port further has a P1ugType and can only be
connected to ports of the same P1lugType.

To connect ports, the AssemblyHierarchical domain has
connect actions. Since the IPC 2020 does not allow for
arbitrary formulae in preconditions, there are in total eight
versions of the connect actions (named connect_1 to
connect_8). Given two ports ?pl and ?p2 they rep-
resent the different possible configuration regarding the
PlugFace and PlugDirection of the two ports. The
domain contains an abstract task connect that can be de-
composed into any of the eight concreate connect actions.
The domain further contains a disconnect action that
disestablishes an existing port connection.



The 10th International Planning Competition — Planner and Domains Abstracts

The remainder of the AssemblyHierarchical do-
main features just three further abstract tasks:
ConnectDevices, ValidateDeviceConnection,
and ValidatePortConnection. ConnectDevices
ensures that a signal can be transmitted between the
two AbstractDevices ?dl and ?d2 which are its
parameters. In order to do so, it first allows — via methods
— to generate an arbitrarily long sequence of connect
and disconnect tasks. This recursion is ended with
a method adding the action guard to the plan (for an
explanation of this action see below). The method ending
the recursion also inserts an instance of the abstract task
ValidateDeviceConnection with the two argu-
ments ?dl and ?d2. This task starts the validation of
the (hopefully) established connection between ?d1 and
?d2. To this end, it has to select an (outgoing-)port ?pl
of ?2d1 and an (ingoing-)port ?p2 of 2d2. These two
ports are then passed on as arguments to the only subtask:
ValidatePortConnection. This task validates via
a recursive decomposition that there is infact a path from
?pl to ?p3 via properly connected cables. If so, the last
decomposition method simpy adds the action ok, which
makes the goal fact pAim true.

Since the AssemblyHierarchical domain was only used in
the total order track and all methods in the domain are to-
tally ordered, the validation of the connection always hap-
pens after all cables have been plugged in. This would
however not be the case if the initial plan was to contain
multiple ConnectDevices actions — as disconnect ac-
tions of the second, if ordered after the first in the initial
plan — might invalidate the connection established by the
first. If multiple devices shall be connected, the respective
ConnectDevices tasks must therefore be partially or-
dered in the initial plan. This however also not gurantees that
connections are only validated after the last connect or
disconect. For this purpose, the guard action adds the
fact pGuard to the state. All connect and disconect
actions have (not (pGuard)) as their preconditions and
the ValidateDeviceConnection task always occurs
strictly after the guard action. This way, validation always
happens after all connect and disconnect actions.

Instances

In the IPC 2020, only totally ordered instances of the As-
semblyHierarchical domain were included in the benchmark
set. As such, each instance contained only a single task
in its inital plan, namely one ConnectDevices task for
two specific devices. Each instance is solely described by
a natural number 7. Each instance has only two true de-
vices called pc and printer. The instance numer i con-
tains ¢ additional cables, called cableWithPlugTypeX
where X € {1,...i}. Each cable has two bi-directional
ports. One port of cable one is male and fits into the pc’s
sole port while one port of the last cable is also male and
fits into the printer’s sole port. Apart from that, cable ¢
always has a port with which it can be connected to cable
1, i.e. every cable has exactly two ports. There are also i
PlugTypes named plugTypeX for X € {1,...47}. Both
of the ports of cable ¢ have plug type i. The pc’s sole port

20

always has plug type 1 and the printer always has plug
type i. For each j € {1,...,i— 1} there is an adapter called
adapterFromPlugTypeXToPlugTypeY (with X = j
and Y = j + 1) which as two ports: one of type j and one of
type 5 + 1.

With this setup there is only a single possible way to use
all cables and adapters to connect the pc to the printer.
As such, each problem of the AssemblyHierarchical domain
has only one “true” solution. The domain however intro-
duces a factorial amount of symmetric solutions — as the or-
der in which the cables and adapters are plugged into one
another can be choosen freely.

The domain in the IPC 2020 contained in total 30 in-
stances from ¢ = 1 to ¢ = 30.

Performance in the IPC

Even though the setup of the AssemblyHierarchical is very
simple, all participating planners in the IPC 2020 struggled
with solving more than a few instances. The best planner
on this domain — Lilotane (Schreiber 2021b; 2021a) solved
only five out of the 30 total instances.

References

Bercher, P.; Biundo, S.; Geier, T.; Hornle, T.; Nothdurft, F.;
Richter, F.; and Schattenberg, B. 2014. Plan, repair, exe-
cute, explain — How planning helps to assemble your home
theater. In Proc. of the 24th Int. Conf. on Autom. Plan. and
Sched. (ICAPS 2014), 386-394. AAAI Press.

Bercher, P.; Richter, F.; Hornle, T.; Geier, T.; Holler, D.;
Behnke, G.; Nothdurft, F.; Honold, F.; Minker, W.; Weber,
M.; and Biundo, S. 2015. A planning-based assistance sys-
tem for setting up a home theater. In Proc. of the 29th AAAI
Conf. on Al (AAAI 2015), 4264-4265. AAAI Press.
Bercher, P.; Richter, F.; Hornle, T.; Geier, T.; Holler, D.;
Behnke, G.; Nielsen, F.; Honold, F.; Schiissel, F.; Reuter, S.;
Minker, W.; Weber, M.; Dietmayer, K.; and Biundo, S. 2017.
Advanced User Assistance for Setting Up a Home Theater.
Cognitive Technologies. Springer. chapter 24, 485-491.

Bercher, P.; Richter, E.; Honold, F.; Nielsen, F.; Schiissel, E;
Geier, T.; Hornle, T.; Reuter, S.; Holler, D.; Behnke, G.; Di-
etmayer, K.; Minker, W.; Weber, M.; and Biundo, S. 2018.
A companion-system architecture for realizing individual-
ized and situation-adaptive user assistance. technical report,
Ulm University.

Holler, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL - A language to
describe hierarchical planning problems. In Proc. of the 34th
AAAI Conf. on AI (AAAI 2020), 9883-9891. AAAI Press.
Schreiber, D. 2021a. Lifted logic for task networks: TO-
HTN planner lilotane in the IPC 2020. In Proceedings of
10th International Planning Competition: planner and do-
main abstracts (IPC 2020).

Schreiber, D. 2021b. Lilotane: A lifted SAT-based approach

to hierarchical planning. Journal of Artificial Intelligence
Research 70:1117-1181.



