
Hierarchical Task Networks Generated Using Invariant Graphs for IPC2020

Damir Lotinac, Filippos Kominis, Anders Jonsson1

1 Universitat Pompeu Fabra, Roc Boronat 138, 08018 Barcelona, Spain.

Abstract

This paper describes HTN domains generated using PDDL
description of a planning domain and a single representative
instance. We also describe the algorithm used to generate the
HTN domains. Two types of composite tasks that interact to
achieve the goal of a planning instance are generated. One
type of task achieves fluents by traversing invariants in which
only one fluent can be true at a time. The other type of task
applies a single action, which first involves ensuring that the
precondition of the action holds. Finally we discuss differ-
ences between JSHOP2 and domains generated for IPC2020
in HDDL.

Introduction

Hierarchical Task Networks models enable defining com-
pound parameterized tasks which can reduce the search
complexity if the adequate constraints can be identified dur-
ing the modeling. The hierarchical structure enables the
modeler to encode domain-specific knowledge. The expres-
siveness of HTNs can help to impose the constraints, which
can in turn lead to a reduction in the search complexity. The
hierarchy ideally imposes some constraints on how tasks can
be decomposed. The more constrained the task network, the
less search has to be performed in order to achieve a certain
task.

HTN models are more expressive than STRIPS (Erol,
Hendler, and Nau 1994), which along with the ability to
construct parametric compound tasks allows for capturing
domain-specific knowledge.

In this paper we describe the HTN domains and instances
which were submitted to IPC2020 1 and the algorithm which
was used to generate them. We used PDDL instances from
IPC-2000 and IPC-2002 as input.

To generate the HTN domains we use HTNPrec algo-
rithm. The algorithm takes as input the PDDL description of
a planning domain and a single representative instance. The
approach is to generate HTNs that encode invariant graphs
of planning domains. An invariant graph is similar to a lifted
domain transition graph, but can be subdivided on types. To

1The domains and the code are available at:
https://github.com/dloti/pddl-to-htn

traverse an invariant graph we define two types of tasks: one
that reaches a certain node of an invariant graph, achieving
the associated fluent, and one that traverses a single edge
of an invariant graph, applying the associated action. These
two types of tasks are interleaved, in that the expansion of
one type of task involves tasks of the other type.

We also describe differences between HTN domains gen-
erated by HTNPrec, HTNGoal and domains generated for
the IPC2020. While HTNPrec and HTNGoal (Lotinac and
Jonsson 2016) use a JSHOP2 (Nau et al. 2003) representa-
tion, for the IPC the domains are given in the HDDL format
(Höller et al. 2020). Further some of the optimizations are
not included in the IPC version. The HTN instances gener-
ated using JSHOP2 are solved with blind search, thus those
HTN domains are meant to guide the search through the un-
derlying invariant graph structures. In contrast HDDL do-
mains are generated with minimal additions to the original
PDDL domain.

Hierarchical Task Networks

Our HTN definition is inspired by Geier and Bercher (2011).
However, just as for STRIPS planning, we separate the def-
inition into a domain part and an instance part. We also im-
pose additional restrictions: a task network can contain at
most one copy of each task, and task decomposition is lim-
ited to progression, always decomposing tasks with no pre-
decessor.

An HTN domain is a tuple h = 〈P,A,C,M〉 consisting
of four sets of untyped function symbols. Specifically, P is
the set of predicates, A is the set of actions (i.e. primitive
tasks), C is the set of compound tasks and M is the set of
decomposition methods. Predicates and actions are defined
as for STRIPS domains but, unlike STRIPS domains, HTN
domains are untyped and we allow negative preconditions.

Each method m ∈ M has an associated tuple
〈c, tnm, pre(m)〉 where c ∈ C is a compound task with
the same arity as m, tnm is a task network and pre(m) is
a set of preconditions, defined as for actions. The task net-
work tnm = (T,≺) consists of a set T of pairs (t, ϕ), where
t ∈ A ∪ C is a task and ϕ is an argument map from m to t,
and a partial order ≺ on the tasks in T .

Given an HTN domain h, an HTN instance is a tuple

The 10th International Planning Competition – Planner and Domains Abstracts

26

s = 〈Ω, init, tnI〉, where Ω is a set of objects and init
is an initial state. The instance s induces sets PΩ and AΩ

of fluents and grounded actions, and sets CΩ and MΩ of
grounded compound tasks and grounded methods, respec-
tively. A grounded method m[x] ∈ MΩ has associated tuple
〈c[x], tnm[x], pre(m[x])〉, where c[x] is a grounded com-
pound task and the precondition pre(m[x]) is derived as
for grounded actions. The grounded task network tnm[x] =
(Tx,≺) is defined by Tx = {t[ϕ(x)] : (t, ϕ) ∈ T}. The ini-
tial grounded task network tnI = ({tI}, ∅) contains a single
grounded compound task tI ∈ CΩ.

An HTN state (s, tn) consists of a state s ⊆ PΩ on flu-
ents and a grounded task network tn. We use (s, tn) →D

(s′, tn′) to denote that an HTN state decomposes into an-
other HTN state, where tn = 〈Tx,≺〉 and tn′ = 〈Ty,≺

′〉.
A valid progression decomposition consists in choosing a
grounded task t ∈ Tx such that t′ 6≺ t for each t′ ∈ Tx, and
applying one of the following rules:

1. If t is primitive, the decomposition is applicable if
pre(t) ⊆ s, and the resulting HTN state is given by s′ =
s⋉ t, Ty = Tx \ {t} and ≺′= {(t1, t2) ∈≺| t1, t2 ∈ Ty}.

2. If t is compound, a grounded method m =
〈t, tn, pre(m)〉 with tn = (Tm,≺m) is applicable
if pre(m) ⊆ s, and the resulting HTN state is given by
s′ = s, Ty = Tx \ {t} ∪ Tm and

≺′ = {(t1, t2) ∈≺ | t1, t2 ∈ Ty}

∪ {(t′, t1) ∈ Tm × Ty | (t, t1) ∈≺} ∪ ≺m .

The first rule removes a grounded primitive task t from
tn and applies the effects of t to the current state, while
the second rule uses a grounded method m to replace a
grounded compound task t with tnm while leaving the
state unchanged. If there is a finite sequence of decompo-
sitions from (s1, tn1) to (sn, tnn) we write (s1, tn1) →∗

D

(sn, tnn). An HTN instance s is solvable if and only if
(init, tnI) →

∗

D (sn, 〈∅, ∅〉) for some state sn, i.e. the initial
HTN state (init, tnI) is decomposed into an empty task net-
work. Let π be the sequence of grounded actions extracted
during such a decomposition; π corresponds to a plan that
results from solving s.

Invariants

In STRIPS planning, an exactly-1 invariant is a subset of flu-
ents F ′ ⊆ PΩ such that exactly one fluent in F ′ is true at
any moment. Formally, |F ′ ∩ init| = 1 and any grounded
action a ∈ AΩ that adds a fluent in F ′ deletes another. The
Fast Downward planning system (Helmert 2009) uses the
domain description of a STRIPS domain to detect lifted in-
variant candidates. Unlike Fast Downward, which grounds
lifted invariants on actual instances, our algorithm operates
directly on the lifted invariants.

In LOGISTICS, Fast Downward finds a single lifted in-
variant candidate {(in ?o ?v), (at ?o ?p)}, i.e. a set of
predicates with associated arguments. In the given invariant,
variable ?o is bound while variables ?v and ?p are free. To
ground the lifted invariant on an instance p, we should cre-
ate one mutex invariant F ′ for each assignment of objects to

the bound variables, obtaining each fluent in F ′ by assigning
objects to the free variables. In our running example, assign-
ing the package p1 to ?o results in the following grounded
mutex invariant:

{(at p1 ap1),(at p1 ap2),(at p1 l1),(at p1 l2),
(in p1 t1),(in p1 t2),(in p1 a1)}.

The meaning of the invariant is that across all LOGISTICS

instances, a given object ?o is either in a vehicle or at a lo-
cation.

If a predicate p ∈ P is not part of any in-
variant but there are actions that add and/or
delete p, we create a new lifted invariant
{(p ?o1 · · · ?ok),(¬p ?o1 · · · ?ok))}. In this in-
variant, all variables ?o1, . . . , ?ok are bound and an
associated fluent can either be true or false.

Given a lifted invariant, our algorithm generates one or
several invariant graphs. We do so by iterating over the
actions of the domain and identifying which actions add
and delete predicates in the same lifted invariant. When
grounded, such actions have the effect of changing the fluent
of an exactly-1 invariant that is currently true. An invariant
graph is a representation of a lifted invariant in which the
nodes are the predicates of the invariant and the edges are
the actions used to change the predicate that is currently true.
We use invariant graphs to infer which actions to perform in
order to achieve a particular fluent of an exactly-1 invariant.

The reason why a given lifted invariant can generate mul-
tiple invariant graphs is that the type of the bound objects
may be different for different actions. For example, in the
LOGISTICS domain, all actions affect the lone invariant
above. However, in the actions for loading or unloading a
package, the bound object ?o is a package, in the action for
driving a truck ?o is a truck, and in the action for flying an
airplane ?o is an airplane. Moreover, we can either load a
package into a truck or an airplane. We use the actions to
differentiate between types, possibly generating multiple in-
variant graphs for each lifted invariant.

To generate the invariant graphs induced by lifted invari-
ants we go through each action, find each transition of each
invariant that it induces (by pairing add and delete effects
and testing whether the bound objects are identical), and
map the types of the predicates to the invariant. We then
either create a new invariant graph for the bound types or
add nodes to an existing graph corresponding to the mapped
predicate arguments.

Figure 1 shows the invariant graphs that we generate in
LOGISTICS. In the top graph (G1), the bound object is a
package ?p, in the middle graph (G2) it is a truck ?t, and
in the bottom graph (G3) it is an airplane ?a. Note that the
predicate in is not actually part of the two bottom graphs,
since trucks and planes cannot be inside other vehicles. Nev-
ertheless, the invariant still applies: a truck or plane can only
be at a single place at once.

Each edge of an invariant graph corresponds to an action
that deletes one predicate of the invariant and adds another.
To do so, the arguments of the action have to include the
arguments of both predicates, including the bound objects.
In the figure, the invariant notation is extended to actions on

The 10th International Planning Competition – Planner and Domains Abstracts

27

G1

G2

G3

(in ?p ?t) (at ?p ?l) (in ?p ?a)

(unloadtruck ?p ?t ?l) (loadplane ?p ?a ?ap)

(unloadplane ?p ?a ?ap)(loadtruck ?p ?t ?l)

(at ?t ?l)
(drivetruck ?t ?l1 ?l2 ?c)

(at ?a ?ap)
(flyplane ?a ?ap1 ?ap2)

Figure 1: Invariant graphs G1, G2 and G3 in LOGISTICS.

edges such that each argument of an action is either bound
or free.

Even if actions preserve the invariant property, the initial
state of a planning instance may violate the condition |F ′ ∩
init| = 1, in which case F ′ is not an exactly-1 invariant. To
verify that a lifted invariant candidate corresponds to actual
exactly-1 invariants, our algorithm needs access to the initial
state of an example planning instance p of the domain. If this
verification fails, the lifted invariant is not considered by the
algorithm.

Generating HTNs

In this section we describe the algorithm for generating the
HTN domains. The idea is to construct a hierarchy of tasks
that traverse the invariant graphs to achieve certain fluents.
In doing so there are two types of interleaved tasks: one that
achieves a fluent in a given invariant (which involves apply-
ing a series of actions to traverse the edges of the graph), and
one that applies the action on a given edge (which involves
achieving the preconditions of the action).

A planning domain is a tuple d = 〈T , <, P,A〉, where
T = {τ1, . . . , τn} is a set of types, < is an inheritance re-
lation on types, P is a set of typed function symbols called
predicates, and A is a set of typed function symbols called
actions. Each action a ∈ A has a set of preconditions pre(a),
a set of add effects add(a) and a set of delete effects del(a).
Each element in these three sets is a pair (p, ϕ) consisting of
a predicate p ∈ P and an argument map ϕ from a to p.

Given d, a planning instance is a tuple p = 〈Ω, init, goal〉,
where Ω = Ω1 ∪ . . . ∪ Ωn is a set of objects of each type.

Formally, our algorithm takes as input a STRIPS plan-
ning domain d = 〈T , <, P,A〉 and a planning instance
p = 〈Ω, init, goal〉 and outputs an HTN domain h =
〈P,A′, C,M〉. The HTN domain h can then be used to solve
any other instance of the domain. Specifically, for each in-
stance p′ of the planning domain d, we construct an HTN
instance s. Solving the HTN induced by d and s returns a
plan that can be adapted to solve p′.

The input planning instance p is used for three purposes:

1. To verify that an invariant candidate is actually an invari-
ant by testing the condition |F ′ ∩ init| = 1.

2. To extract a subset of predicates PG ⊆ P that are part of
the goal.

3. To perform goal ordering as described in a subsequent
section.

The algorithm first constructs the invariant graphs
G1, . . . , Gk described above. In what follows we de-
scribe the components of the HTN domain h.

The set A′ contains the following actions:

• Each action a ∈ A. For each element βk(a) ∈ T of
the type list of a, we add an additional precondition
(βk(a), ϕk). where the argument map ϕk maps the argu-
ment xk of a to the lone argument of the type predicate
βk(a), ensuring that argument xk has the correct type.

Note that only actions in A add or delete predicates in the
original set P . The set C contains three types of compound
tasks:

• For each predicate p ∈ P , a task achieve-p with arity
α(p).

• For each invariant graph Gi and each p ∈ P that is posi-
tive in Gi, a task achieve-p-i with arity α(p).

• For each invariant graph Gi, each predicate p in Gi, and
each outgoing edge of p (corresponding to an action a ∈
A), a task do-p-a-i with arity α(a).

The task achieve-p is a wrapper task that uses a task
achieve-p-i to achieve p by traversing the edges of the in-
variant graph Gi. To traverse each edge of Gi, achieve-p-i
has to use a task of type do-p-a-i, which in turn uses tasks
of type achieve-p′ to achieve the preconditions of a.

Methods

The set M contains the following decomposition methods.
For simplicity, we use x to denote an argument list, and de-
fine argument maps inline which are described in the text.
We describe methods in pseudo-SHOP2 syntax in the fol-
lowing format:

(:method (〈name〉[〈arguments〉])
(〈precondition〉)
(〈tasklist〉))

For each method in the first line we specify a name and
arguments, in the second line we give a precondition list,
and finally in the third we specify the respective task list to
which method decomposes. For clarity, we add an exclama-
tion mark in front of primitive tasks.

• Methods for achieve-p

The first type of compound task, achieve-p, has one as-
sociated method for each invariant graph Gi in which p
appears. This method is defined as follows:

(: method (achieve-p[x])
(¬p[x])
(achieve-p-i[x])).

Intuitively this method delegates achieving p to the task
achieve-p-i for some invariant graph Gi. The precondition
¬p[x] ensures that p is not currently true.

The 10th International Planning Competition – Planner and Domains Abstracts

28

In addition, there is one method with empty task list which
is applicable when p already holds:

(: method (achieve-p[x])
(p[x])
()).

• Methods for achieve-p-i

The second type of compound task, achieve-p-i, has one
associated method for each predicate q in the invariant
graph Gi and outgoing edge of q (corresponding to an
operator o):

(: method (achieve-p-i[x])
(¬p[x], q[ϕq(x)])
(do-q-o-i[ϕo(x)], achieve-p-i[x])).

Operator o appears on an outgoing edge from q, i.e. o
deletes q. Intuitively, one way to achieve p in Gi, given
that we are currently at some different node q, is to tra-
verse the edge associated with o using the compound task
do-q-o-i. After traversing the edge we recursively achieve
p from the resulting node. The argument map ϕo should
map the bound objects of p to o while leaving the remain-
ing arguments of o as free variables. The argument map
ϕq maps the bound objects of p to q, and shares all free
variables with ϕo (since q is a delete effect of o).

We also define a decomposition method for achieve-p-i
which is applicable when p already holds and has empty
task list:

(: method (achieve-p-i[x])
(p[x])
())

• Method for do-p-o-i

The third type of compound task, do-p-o-i, has a single
associated method. The aim is to apply operator o to tra-
verse an outgoing edge of p in the invariant graph Gi.
To do so, the task list has to ensure that all preconditions
p1, . . . , pk of o hold (excluding p, which has to hold to
apply the method, as well as any static preconditions of
o). We define the method as

(: method (do-p-o-i[x])
(p[ϕp(x)])
(achieve-p1[ϕ1(x)], . . . , achieve-pk[ϕk(x)], !o[x]))

Here, the argument map ϕj , 1 ≤ j ≤ k, maps the ar-
guments of operator o to the precondition pj of o. This
mapping is given directly by the definition of operator o.
Note that the decomposition achieves all preconditions of
o except p, then applies o.

When p is the only precondition of operator o, task
do-p-o-i[x] is not needed since operator o is always
applicable as long as p holds. In this case, whenever
do-p-o-i[x] appears in a decomposition method of a task
achieve-q-j, we replace do-p-o-i[x] directly with the op-
erator !o[x].

Planning Instances

Once we have generated the HTN domain h we can ap-
ply it to any instance of the domain. Given a STRIPS in-

stance p = 〈Ω, init, goal〉, we construct an HTN instance
s = 〈Ω, init′, 〈achieve-p1[x1], . . . , achieve-pk[xk]〉〉, given
goal = {p1[x1], ..., pk[xk]}, as follows. The set of objects
Ω = Ω1 ∪ · · · ∪ Ωn is identical to that of p. The initial
state init′ is defined as init′ = init ∪ {τj [ω] : τj ∈ T ,
ω ∈ Ωj} ∪ {goal-p[x] : p[x] ∈ goal}. We thus mark the
type τj of each object ω using the fluent τj [ω], and we mark
all fluents p[x] in the goal state using the fluent goal-p[x].
The initial task network contains the achieve tasks which
correspond to each fluent p[x] in the goal state. The order-
ing of achieve tasks is imposed based on the order of goal
fluents in the given PDDL instance.

Optimizations

Achieving the preconditions of an action a in any order is
inefficient since an algorithm solving the HTN instance may
have to backtrack repeatedly. For this reason, we include the
HTNPrec algorithm that uses a simple inference technique
to compute a partial order in which to achieve the precon-
ditions of a. We define a set of predicates whose value is
supposed to persist, and check whether a path through an
invariant graph is applicable given these persisting predi-
cates. While doing so, only the values of bound variables
are known, while free variables can take on any value. We
match the bound variables of predicates and actions to de-
termine whether an action allows a predicate to persist.

Discussion

There are several differences between the HDDL domains
and instances and JSHOP2 version generated by HTNPrec
and HTNGoal. The HDDL version is closest to HTNPrec,
since it does not apply goal order optimization. However,
there are several differences to the HTNPrec algorithm as
well. In this section we give tasks, methods and predicates
which are not generated by the IPC2020 version of the algo-
rithm.

Predicates which are not generated:

• visited-p, indicating that p has already been visited dur-
ing search.

• achieving-p, indicating that p or another predicate in the
same invariant are already being achieved.

• goal-p, indicating that a fluent derived from p is a goal
state.

Actions which are not generated:

• occupy-i, which marks each predicate in the invariant
graph Gi as being achieved.

• clear-i, which deletes visited-p and achieving-p for
each predicate p of the invariant graph Gi.

• test-p with arity 0 and no effects, whose precondition
tests if all goal fluents derived from p hold.

The only task left out is solve whose decomposition
achieves the goal condition JSHOP2 version. In HDDL the
algorithm simply creates the task list by adding the achieve

tasks in the order of appearance in the PDDL instance. This
is under the assumption that the original instance can be
solved under such restriction.

The 10th International Planning Competition – Planner and Domains Abstracts

29

The predicates and actions mentioned above are used to
guide the search over the HTN decompositions. As such
these predicates are added having blind search in mind and
while they should not hinder the perofmance of a heuristic
planner, they can also be left out. HTNPrec and HTNGoal
also have a different structure given that the resulting HTN
consists of only one task to decompose. In contrast, for the
IPC2020 we generated instances with task list consisting of
achieve tasks.

References

Erol, K.; Hendler, J.; and Nau, D. 1994. HTN planning:
Complexity and expressivity. In Proceedings of the 12th
National Conference on Artificial Intelligence (AAAI’94),
1123–1128.

Geier, T., and Bercher, P. 2011. On the Decidability of HTN
Planning with Task Insertion. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJ-
CAI’11), 1955–1961.

Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173:503–
535.

Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. Hddl: An extension to
pddl for expressing hierarchical planning problems. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 34, 9883–9891.

Lotinac, D., and Jonsson, A. 2016. Constructing hierarchi-
cal task models using invariance analysis. In Proceedings of
the Twenty-second European Conference on Artificial Intel-
ligence, 1274–1282.

Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, W.; Wu,
D.; and Yaman, F. 2003. SHOP2: An HTN Planning System.
Journal of Artificial Intelligence Research 20:379–404.

The 10th International Planning Competition – Planner and Domains Abstracts

30

