
HTN Planning Domain for Deployment of Cloud Applications

Ilche Georgievski
Service Computing Department

Institute for Architecture of Application Systems
University of Stuttgart

firstname.lastname@iaas.uni-stuttgart.de

Abstract

Cloud providers are facing a complex problem in configur-
ing software applications ready for deployment on their in-
frastructures. Hierarchical Task Network (HTN) planning can
provide effective means to solve such deployment problems.
We present an HTN planning domain that models deployment
problems as found in realistic Cloud environments.

Introduction
The choice of enterprises to have their software applications
deployed and run on Cloud infrastructures is motivated by
elasticity, flexibility, scalability and high availability, which
are the promised benefits of Cloud Computing (Buyya et al.
2009). Before being able to deploy an application, Cloud
management teams have to find, choose and configure ap-
propriate software components that will compose the appli-
cation, thus making it ready for deployment. Solutions to
such deployment problems are typically configured manu-
ally or using predefined scripts. Both approaches seem im-
practical for Cloud management as they are error-prone and
require strenuous effort to handle a large number of com-
ponents, versions of components and high interdependence
between components (Binz et al. 2014). Cloud providers and
Cloud Computing community are therefore in need for ap-
proaches and tools that can solve deployment problems au-
tomatically (Arshad, Heimbigner, and Wolf 2003).

Artificial Intelligence (AI) planning can provide powerful
means to automatically and efficiently search for solutions
to deployment problems. Hierarchical Task Network (HTN)
planning appears to be particularly suitable as it can incorpo-
rate the configuration knowledge otherwise provided by the
Cloud management teams. In this paper, we describe HTN
planning problems that correspond to deployment problems.
We first introduce the component model used for describing
deployment problems, and then we describe an HTN plan-
ning domain that models such deployment problems.

Component Model
Aelous is a component model used to describe software
applications as found in realistic Cloud deployments (Di
Cosmo et al. 2014). A central element of Aeolus is a com-
ponent, a manageable software resource that provides and

requires functionalities. Each component has three states:
uninstalled, installed, and running. State transitions are done
using deployment actions. For example, we can run an in-
stalled component by invoking a runComponent action on it.
A component may require or provide different functionality
at each state. The requirement of functionality is expressed
via require ports, and providing of functionality through
provide ports. A component can transition from one state to
another only if the functionality the new state requires can
be provided by other component(s). When a component goes
to a new state, its require ports are bound to appropriate pro-
vide ports of other component(s). This process is called port
binding. Once a component is in the new state, its provide
ports become active via port activation. Since a component
transitions from some state, its ports must be deactivated and
unbound via port deactivation and port unbinding.

This component model has two interesting features. First,
since component represent abstract entities, they must be in-
stantiated. The peculiarity comes from the fact that the cre-
ation of new uninitialised component instances happens on
demand during runtime. The second feature is that a cycle
may occur between states of different component instances:
an instance is expected to provide a functionality, but it is
not possible because the instance is required to change its
state at the same time (Lascu, Mauro, and Zavattaro 2013).
We can deal with such cycles by creating as many instances
of the same component as needed, and deploying them in
different states. This process is called instance duplication.

A configuration describes all available components, cur-
rently deployed component instances and their states, and
current bindings of components via ports. A deployment
problem consists of an initial configuration, a set of deploy-
ment actions, and a request for a new configuration, i.e.,
application. The solution is a deployment run, which is a
sequence of deployment actions on components that, when
deployed, produce the required configuration.

Deployment Planning Domain

We now describe the deployment HTN domain model that
encodes deployment problems. Our description is based on
the paper in which we introduced the HTN planning ap-
proach to solving deployment (Georgievski et al. 2017).

The 10th International Planning Competition – Planner and Domains Abstracts

34

Components, States and Ports

We describe components, instances, and ports using
component instance port as domain types. Each com-
ponent type would be represented as an object of
component. For example, a Wordpress component would
be represented as wordpress - component.

Even though Aelous associates components with states,
component instances are the ones to be in a specific state
during planning. We encode a state of an instance in a pred-
icate “(state instance)”, where state is a string representing
the instance’s state, and instance is a variable representing
the component instance. For example, (installed w1)

represents a Wordpress instance w1 in an installed state.

We encode the association of states with ports in a
predicate “(statePort component port)”, where statePort
is a string describing the type of port in a specific
state, and component is a variable referring to an ab-
stract component that requires or provides a port repre-
sented by the port variable. For example, if Wordpress
requires the httpd port in the installed state, we encode
it as (installed-require wordpress httpd). Note
that such knowledge holds for all instances of the respective
component. These predicates are static predicates.

Deployment Actions

We encode all deployment actions as planning actions as fol-
lows. Action’s parameters correspond either to a component
instance variable or to variables of a port and two instances
in the case of binding actions (see below). The precondi-
tions and effects of each action capture the semantics of
the respective deployment action. Listing 1 shows the action
that corresponds to the startComponent deployment action,
which makes the state of an instance to become installed.
It uses a conditional effect within a universal quantifier to
activate all the ports associated with the installed state of
the component which the current instance belongs to. The
encoding of the actions for running, stopping and terminat-
ing component instances are similar. There are also binding
actions responsible for low-level binding of ports – require
ports are bound to provide ports. They are represented by
two planning actions. The bind action creates a binding be-
tween a provide port of some instance and a require port of
another one, and the unbind action deletes an already es-
tablished binding between two instances.

The last action is for creating new uninitialised in-
stances. The createInstance action shown in Figure 2
uses a domain function to get (and increase) a num-
ber that we use to uniquely represent an instance in
a predicate as (instance ?iNum - number). The do-
main function does not take arguments and serves as
a counter to keep track of the current value that can
be assigned for new instances. The action uses another
predicate, (type ?iNum - number ?c - component),
to associate a new instance with a particular component.

Configuration Processes

We now describe the encoding of processes needed for con-
figuring applications. The basic process requires satisfaction

Listing 1: HTN action for starting a component instance.

(: a c t i o n s t a r t
:parameters (? i − i n s t a n c e)
: p r e c o n d i t i o n (not (i n s t a l l e d ? i))
: e f f e c t (and

(i n s t a l l e d ? i)
(f o r a l l (? p − p o r t) (when

(and (i n s t a l l e d − p r o v i d e ? c ? p)
(t y p e ? i ? c))

(a c t i v e ? p ? i))
)

)
)

Listing 2: HTN action for creating an uninitialised compo-
nent instance.

(: a c t i o n c r e a t e I n s t a n c e
:parameters (? c − component)
: p r e c o n d i t i o n ()
: e f f e c t (and

(i n s t a n c e (i n s t a n c e − n u m b e r))
(t y p e (i n s t a n c e − n u m b e r) ? c)
(i n c r e a s e (i n s t a n c e − n u m b e r) 1)

)
)

of dependencies to functionalities provided by components.
Let us assume that an instance in an uninstalled state can-
not have requirements to be satisfied. We may then consider
two abstractions of the basic process. The first one refers
to acquiring a component functionality in an installed state,
while the second abstraction refers to establishing a func-
tionality in a running state. HTNs naturally enable encod-
ing knowledge at different levels of abstraction; we can for-
mulate tasks and encode high-level strategies in the meth-
ods of these tasks before reasoning on low-level primitive
tasks (Georgievski and Aiello 2015).

We encode each abstraction as a compound task, namely
install and run. Their methods encode specific configu-
ration processes. One such method encodes the prerequisites
for port activation. If the current component instance has re-
quire ports that are not active, the method first activates each
port and makes a recursive call until all necessary ports are
activated. The actual process of port activation is encoded
in a separate task, which not only activates a required func-
tionality, but also finds and installs (or runs) a component
instance that provides that functionality. An instance with
active require ports can then use the functionalities of other
components with active provide ports. This is achieved by
another method that encodes the port binding. For this pro-
cess, the method depends directly on the binding actions. In
addition to the methods for port activation and binding, there
is a method for the case when all require ports are active and
bound. To address the satisfaction of all require ports, we
use a universal quantifier with implication in the method for

The 10th International Planning Competition – Planner and Domains Abstracts

35

both tasks, install and run. In the case of run, we have
to deactivate the ports that will be no longer provided by the
instance in the installed state. The process of port deactiva-
tion is similar to the process of port activation and it uses
port unbinding. The process of port unbinding is more com-
plex than the binding one, and requires checking for con-
straint violation. That is, we have to take care of active pro-
vide ports bound to active require ports. We use a separate
task to encode the port unbinding. The unbindPorts task
does nothing when the port is bound and needed for the next
transition. When all necessary constraints are satisfied, it un-
binds a specific port and recursively calls itself.

There are methods in install and run that deal with
the case when there are no required functionalities for an
instance. This means that we need a transition which can be
handled by installing the component instance directly. In the
case of running an instance, we invoke the port deactivation
task to ensure a valid transition to the running state.

The modelling of the transitions from a running state to an
installed state and further to an uninstalled state is analogous
to the encoding of the tasks we described so far.

Finally, we encode instance duplication as a separate
method. The method makes sure that the current component
instance is in a specific state and it has at least one provide
port bound. Consequently, a new component instance is cre-
ated either in an installed state or in a running state, depend-
ing on the type of configuration.

Final Remarks

Our HTN planning domain model encodes realistic Cloud
deployment problems. Using this domain, one can gener-
ate a problem file by specifying components and ports as
objects, component states and ports as predicates, currently
deployed instances as predicates, current states of deployed
instances as predicates, bindings as predicates, and initial-
ising the domain function to some value. Listing 3 shows
an example of a problem file for the deployment of Word-
press, and Listing 4 shows its plan. Finally, HTN planning
problems with varying difficulty can be generate automati-
cally by manipulating the states and ports of components, as
described in (Georgievski et al. 2017).

Acknowledgments

We thank Faris Nizamic, Alexander Lazovik and Marco
Aiello for the discussions on earlier versions of the domain.
We also thank Gregor Behnke for the valuable insights on
the domain encoding and for transforming the domain to a
suitable specification for the IPC 2020 on HTN planning.

References

Arshad, N.; Heimbigner, D.; and Wolf, A. L. 2003. Deploy-
ment and dynamic reconfiguration planning for distributed
software systems. In IEEE International Conference on
Tools with Artificial Intelligence, 39–46.

Binz, T.; Breitenbücher, U.; Kopp, O.; and Leymann, F.
2014. TOSCA: Portable Automated Deployment and Man-
agement of Cloud Applications. Springer. 527–549.

Listing 3: HTN problem file

(d e f i n e (problem p)
(:domain dep loyment)
(: o b j e c t s

w o r d p r e s s mysql apache2 − component
h t t p d mysql− in mysql−up − p o r t

)
(: i n i t

(i n s t a l l e d − r e q u i r e w o r d p r e s s h t t p d)
(r u n n i n g − r e q u i r e w o r d p r e s s h t t p d)
(r u n n i n g − r e q u i r e w o r d p r e s s mysql−up)
(i n s t a l l e d − p r o v i d e apache2 h t t p d)
(i n s t a l l e d − p r o v i d e mysql mysql− in)
(r u n n i n g − p r o v i d e mysql mysql−up)
(= (i n s t a n c e − n u m b e r) 0)

)
(: h t n

: t a s k s (run w o r d p r e s s)
: o r d e r i n g ()
: c o n s t r a i n t s ()

)
)

Listing 4: Example plan for the problem in Listing 3

1 . (c r e a t e I n s t a n c e w0)
2 . (c r e a t e I n s t a n c e w1)
3 . (s t a r t a1)
4 . (b in d h t t p d w0 a1)
5 . (s t a r t w0)
6 . (c r e a t e I n s t a n c e m2)
7 . (s t a r t m2)
8 . (run m2)
9 . (b in d mysql−up w0 m2)
1 0 . (run w0)

Buyya, R.; Yeo, C. S.; Venugopal, S.; Broberg, J.; and
Brandic, I. 2009. Cloud Computing and Emerging IT Plat-
forms: Vision, Hype, and Reality for Delivering Computing
as the 5th Utility. Future Gener. Comput. Syst. 25(6):599–
616.

Di Cosmo, R.; Mauro, J.; Zacchiroli, S.; and Zavattaro, G.
2014. Aeolus: A component model for the cloud. Informa-
tion and Computation 239:100–121.

Georgievski, I., and Aiello, M. 2015. HTN planning:
Overview, comparison, and beyond. Artificial Intelligence
222:124–156.

Georgievski, I.; Nizamic, F.; Lazovik, A.; and Aiello, M.
2017. Cloud Ready Applications Composed via HTN Plan-
ning. In IEEE International Conference on Service Oriented
Computing and Applications, 23–33.

Lascu, T. A.; Mauro, J.; and Zavattaro, G. 2013. A Planning
Tool Supporting the Deployment of Cloud Applications. In
IEEE International Conference on Tools with Artificial In-
telligence, 213–220.

The 10th International Planning Competition – Planner and Domains Abstracts

36

