
Snake Domain for HTN IPC 2020

Maurı́cio Cecı́lio Magnaguagno
Independent researcher

maumagnaguagno@gmail.com

Abstract

This is a description of the Snake domain and problem
generator submitted to the HTN IPC 2020 total order
track. In the Snake domain the goal is to hunt mice
spread over multiple locations, with one or more snakes
that get longer as they strike each mouse.

Introduction

The Snake domain is based on the homonymous game genre,
in which snakes move to clear locations or strike a nearby
mice in a grid/graph-based scenario, the mice do not move
as they are too afraid. Each snake occupies one or more ad-
jacent locations due to their long body. The goal is to hunt
all the mice or have the snakes occupying certain locations
(which forces them to eat and grow). Multiple plans may
exist in some scenarios due to snakes being able to strike
mice with different orderings and paths. Plans contain zero
or more movement actions and one strike per mouse. Differ-
ently from the game where usually only one mouse is visible
at a time, all mice are visible to give more choice. The do-
main was motivated by the creative way in which one can de-
scribe the snake actions without updating all the snake parts
and the little amount of objects required to describe a snake.
This paper presents the Snake domain and problem genera-
tor1 for PDDL (McDermott et al. 1998), HDDL (Höller et al.
2020) and (J)SHOP input language (Ilghami and Nau 2003).

Domain

The domain requires :typing, :equality and :negative-
preconditions in PDDL, and also :method-preconditions and
:universal-preconditions in HDDL. The JSHOP domain im-
plicitly has the same HDDL requirements. Universal precon-
ditions are used to verify that every location does not contain
a mouse and the hunting task is complete.

Types

All objects are either snake or location. This removes the
need to have more objects to define each mouse and snake
parts. Removing such objects makes descriptions simpler
and grounding faster due to fewer parameters. We use

1https://github.com/Maumagnaguagno/Snake

(mouse-at ?location) instead of (at ?mouse ?location) to re-
move the ?mouse parameter from the strike action. If we had
opted for snake parts we would have multiple descriptions of
each long snake, causing a state-space explosion.

Predicates

The state is described by only a few predicates. Locations
are occupied to avoid overlapping snake parts and mice dur-
ing movement actions, and also used to simulate walls. Lo-
cations that are adjacent constrain the range of actions. A
snake head location is used to constrain the range of actions
of each snake. The sequence of locations occupied by each
snake are connected, with the last part being the tail.

Actions/Operators

Three actions/operators exist in this domain. The strike ac-
tion represents the mouse being consumed by an adjacent
snake head. Two movement actions are used to describe a
single or multiple location snake movement, move-short and
move-long, respectively. Move was split in two to minimize
the amount of ground actions without the use of disjunc-
tions. The JSHOP version also contains explicit visit/unvisit
operators to avoid infinite loops. The signatures of actions
are shown in Listing 1.

Listing 1: Signatures of Snake actions with types ommited.

(: a c t i o n s t r i k e :parameters (
? snake ? headpos ? foodpos))

(: a c t i o n move−short :parameters (
? snake ? n e x t p o s ? s n a k e p o s))

(: a c t i o n move−long :parameters (
? snake ? n e x t p o s ? headpos ? bodypos ? t a i l p o s))

Tasks and Methods

Two tasks are described in the JSHOP and HDDL versions,
with 5 methods in total. The first task is hunt, with zero pa-
rameters, used as the main task. Two methods are used for
this task, a recursive one to select one snake that will strike
a mouse, and a base one for no more mice. The base case is
described after the recursive method as it happens only once,
when all mice have been consumed.

The second task is move, with a snake, its head and goal
location as parameters. Here we have a base method and two
recursive ones to use the move-long and move-short actions.

The 10th International Planning Competition – Planner and Domains Abstracts

37

The move-base case is described first to avoid redundant ex-
pansions in planners that follow the description order. The
move-short is the last case described as it is less common.
The signatures of tasks and their related methods are shown
in Listing 2.

Listing 2: Signatures of Snake tasks and related methods.

(: t a s k hu n t :parameters ())
(:method h u n t a l l :parameters (? snake

? foodpos ? s n a k e p o s ? pos1))
(:method h u n t d o n e :parameters ())
(: t a s k move :parameters (? snake

? s n a k e p o s ? g o a l p o s))
(:method move−base :parameters (

? snake ? s n a k e p o s ? g o a l p o s))
(:method move−long−snake :parameters (

? snake ? s n a k e p o s ? g o a l p o s ? pos2
? bodypos ? t a i l p o s))

(:method move−short−snake :parameters (
? snake ? s n a k e p o s ? g o a l p o s ? pos2))

Problem
Each problem contains snakes and locations as objects. Each
snake must contain at least a head and tail described in the
initial state. If head and tail are on the same location, single
location snake, there is no need to connect snake parts. Each
mouse location must be described in the initial state. Loca-
tions that contain snake parts, mice or walls are occupied.
Locations must be adjacent to one another to describe pos-
sible paths. Adjacencies are usually symmetrical, (adjacent
l1 l2) (adjacent l2 l1), and grid-based, but are not limited to.

For goal-based planning it may include snakes’ final con-
figuration and mice not existing anymore. For task-based
planning it may include movement and hunting tasks. Due
to the possibly large amount of mice, it is recommended to
use a quantifier to describe a goal state without mice or tasks
to hunt every mouse.

Problem generator

Currently a text representation, like the one from Sokoban2,
can be used with our problem generator. Each character in
a text file represents one element of the Snake problem in a
grid-based scenario:

• Space: clear location
• @: snake head location
• $: snake body location

• *: mouse location
• #: wall location

Currently limited to a single snake with snake parts ad-
jacent only to previous and next locations to avoid ambigu-
ity. Walls are converted to always occupied locations, but
could also be represented as lack of adjacencies to these lo-
cations, which would be harder to manually modify later.
Multiple problems in this format are already available, they
were manually crafted to generate longer solutions or force
certain paths for the snake to be able to strike all mice.

The current problem generator converts all *.snake files in
the current folder or the ones provided as arguments accord-
ing to a type argument, generating *.snake.type files. Type
includes pddl, hddl and jshop.

2http://www.sokobano.de/wiki/index.php?title=Level format

Example

The content of the input pb2.snake is presented in Listing 3.
With the execution of the problem generator, ruby pbgenera-
tor.rb hddl pb2.snake, we obtain an HDDL equivalent prob-
lem. The output pb2.snake.hddl is presented in Listing 4.

∗ \n
$\n
@

Listing 3: Snake input file example with 3x3 grid,
two-parts snake and a mouse.

Listing 4: HDDL description of converted pb2.snake.

(d e f i n e (problem pb2) (:domain snake)
(: o b j e c t s v i p e r − snake

px0y0 px1y0 px2y0
px0y1 px1y1 px2y1
px0y2 px1y2 px2y2 − l o c a t i o n)

(: i n i t (head v i p e r px2y2)
(c o n n e c t e d v i p e r px2y2 px2y1)
(t a i l v i p e r px2y1)
(mouse−at px0y0)
(o c c u p i e d px0y0)
(o c c u p i e d px2y1)
(o c c u p i e d px2y2)
(a d j a c e n t px0y0 px1y0)
. . . ; A d j a c e n c i e s ommited
(a d j a c e n t px2y2 px2y1))

(:h tn : s u b t a s k s (hu n t)))

Conclusion
This domain presents several features to help planner test-
ing. All planning instances can be described in the compact
format used by the generator, converted to images and easily
modified by hand. The planning instances can scale indefi-
nitely, as larger grids accept more mice and longer snakes,
however it requires a smart random level generator to cre-
ate such larger instances with unique challenges. Heuristic
planners can estimate which snake is closer to each mouse to
minimize actions, while considering that long snakes create
moving walls that affect such estimations. Numeric planners
could take even more advantage in regular grids. In the fu-
ture we expect to improve the problem generator with mul-
tiple snakes and their goal locations. Multiple snakes could
also modify the domain, with the requirement of moving all
snakes every time-step, like the real game.

References
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
Proceedings of the 34th AAAI Conference on Artificial In-
telligence (AAAI 2020), 9883–9891. AAAI Press.

Ilghami, O., and Nau, D. S. 2003. A General Approach
to Synthesize Problem-Specific Planners. Technical Report
CS-TR-4597, Maryland University, Dept of Computer Sci-
ence, College Park, Maryland.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL-
the planning domain definition language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control.

The 10th International Planning Competition – Planner and Domains Abstracts

38

